EASTERN UNIVERSITY, SRI LANKA

hiversity,

SECOND EXAMINATION IN SCIENCE 2003/2004

(June/July'2005)

SECOND SEMESTER

MT 204 - RIEMANN INTEGRAL & SEQUENCE AND SERIES OF FUNCTIONS

Answer all questions Time: Two hours

- 1. Let f be a bounded real valued function on [a, b]. Explain what is meant by the statement that "f is Riemann integrable over [a, b]".
 - (a) With the usual notations, prove that a bounded real valued function f on [a, b] is Riemann integrable if and only if for given ε > 0, there exists a partition P of [a, b] such that

$$U(P,f) - L(P,f) < \epsilon.$$

- (b) Prove that if f is Riemann integrable over [a, b] and there exist $m, M \in \mathbb{R}$ such that $m \leq f(x) \leq M \quad \forall x \in [a, b]$ then there exists $\mu \in [m, M]$ such that $\int_{a}^{b} f(x) dx = \mu(b-a)$.
- (c) Suppose f is Riemann integrable over [a, b]. Prove that |f| is Riemann integrable over [a, b] and $|\int_{a}^{b} f| \leq \int_{a}^{b} |f|$.

- 2. When is an integral $\int_{a}^{b} f(x) dx$ said to be an improper integral of th first kind, the second kind and the third kind?
 - (a) If 0 ≤ f(x) ≤ g(x) for all [a,∞) and if f(x) and g(x) are continuous on [a,∞). Prove that
 - (i) if $\int_{a}^{\infty} g(x)dx$ converges then $\int_{a}^{\infty} f(x)dx$ converges. (ii) if $\int_{a}^{\infty} f(x)dx$ diverges then $\int_{a}^{\infty} g(x)dx$ diverges.
 - (b) Discuss the convergence of the improper integral $\int_a^b \frac{dx}{(x-a)^p}$.
 - (c) Test the convergence of the following:

(i)
$$\int_0^\infty \frac{dx}{x^2 + x^{\frac{1}{2}}} dx$$
;

(ii)
$$\int_0^1 \frac{\sin^{-1} x}{\sqrt{1-x} \, dx}$$

3. Define the term "Uniform convergence" of a sequence of functions.

- (a) Prove that the sequence of functions defined on E converges unformly on E if and only if every $\epsilon > 0$ there exists an integer Nsuch that $|f_n(x) - f_m(x)| < \epsilon$ for all $x \in E$ and for all $m, n \ge N$
- (b) Suppose {f_n} is a sequence of real valued functions differentiable on [a, b] and such that {f_n(x₀)} converges for some points x₀ ∈ [a, b]. Prove that if {f'_n} converges uniformly on [a, b], then {f_n} converges uniformly on [a, b] to a differentiable function f, and f'(x) = lim f'_n(x), ∀ x ∈ [a, b].
- (c) Provide a sequence of functions $\{f_n\}$ converges to a function f on an interval [0, 1] such that $f'_n(x)$ and f'(x) exist and $\lim_{n \to \infty} f'_n(x) \neq f$

4. (a) Let $\{f_n\}$ be a sequence of real valued functions defined on $E \subseteq \mathbb{R}$. Suppose that for each $n \in \mathbb{N}$, there is a constant M_n such that

 $|f_n(x)| \le M_n$, for all $\in E$

where $\sum M_n$ converges. Prove that $\sum f_n$ converges uniformly on E.

- (b) Let $\{f_n\}, \{g_n\}$ be two sequences of functions defined over a non empty set $E \subseteq \mathbb{R}$. Suppose also that
 - i. $|S_n| = |\sum_{k=1}^n f_k(x)| \le M$ for all $x \in E$, all $n \in \mathbb{N}$.
 - ii. $\sum_{k=1}^{\infty} |g_{k+1}(x) g_k(x)|$ converges uniformly in E.

iii. $g_n \longrightarrow 0$ uniformly in E.

Prove that $\sum_{k=1}^{\infty} f_k(x)g_k(x)$ converges uniformly in E.

(c) Show that
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+ax^2}$$
 where $a > 0$ converges uniformly in \mathbb{R} .