EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION.IN SCIENCE 2003/2004
(June / July '2005)

SECOND SEMESTER

MT 205 - DIFFERENTIAL GEOMETRY

Answer all Questions

Time: one hour

1. State Serret-Frenet formula.
(a) Show that the tangent vectors along the curve $\underline{r}=a t \underline{e}_{1}+b t^{2} \underline{e}_{2}+t^{3} \underline{e}_{3}$ where $2 b^{2}=3 a$ make a constant angle with the vector $\underline{r}_{1}=\underline{e}_{1}+\underline{e}_{3}$.
(b) Define "osculating plane" and "rectifying plane" of a space curve.

Find the equation for the osculating plane and rectifying plane to the curve $x=3 t-t^{3}, y=3 t^{2}$ and $z=3 t+t^{3}$ at the point $t=1$.
(c) Show that for a curve lying on a sphere of radius a and such that the torsion τ is never 0 , the following equation is satisfied

$$
\left(\frac{1}{\kappa}\right)^{2}+\left(\frac{\kappa^{\prime}}{\kappa^{2} \tau}\right)^{2}=a^{2}
$$

2. (a) Define the term "osculating circle of a space curve" and find it's radius and center.
If the curvature κ for a given curve \mathcal{C} is constant. Then show that the curvature κ_{1} for the locus of the centre of curvature of the osculating circle is also constant and is torsion varies inversely as that of \mathcal{C}.
(b) Define the "Involute" and "Evolute" of a given curve \mathcal{C}.

With usual notations find the vector equation of the involute of a given curve, $\underline{r}=\underline{r}(s)$. Then show that the torsion of the involute is given by

$$
\frac{\kappa \tau^{\prime}-\tau \kappa^{\prime}}{\kappa(c-s)\left(\tau^{2}+\kappa^{2}\right)} .
$$

