EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE (2003/2004) SECOND SEMESTER (JUNE/July.'2005)

MT 218 - FIELD THEORY

Repeat

Answer all questions

Time: Two hours

- 1. State Gauss's theorem in the electro-static field.
 - (a) A charge q is uniformly distributed on a circle with equations $x^2 + y^2 = a^2, z = 0$. Show, with the usual notations that the potential at the point P(0, 0, z) is given by $\frac{q}{4\pi\epsilon_0\sqrt{a^2+z^2}}$. Prove that the electric field at P is $\frac{qz}{4\pi\epsilon_0(a^2+z^2)^{\frac{3}{2}}}\frac{k}{2}$.
 - (b) A spherical volume with radius a and charge density distribution

 ρ is given by

$$\rho = \begin{cases} \rho_0 \left(1 - \frac{r^2}{a^2} \right) & \text{if } r \leq a \\ 0 & \text{if } r > a. \end{cases}$$

- i. Calculate the total charge.
- ii. Find the electric field intensity outside of the charge distribution.
- iii. Find the electric field intensity inside of the charge distribution.

2. (a) Define the term "electric dipole".

Prove that the electric potential V at a point P at a distance r form the dipole of moment \underline{P} is given by

$$V = -\frac{1}{4\pi\varepsilon_0} \left\{ \underline{P} \cdot grad\left(\frac{1}{r}\right) \right\}.$$

Hence prove that the force on a dipole in an electric field E is given by,

$$\underline{F} = (\underline{P} \cdot \nabla)\underline{E}$$

(b) What is dielectric polarization ?

Show, with the usual notation that the potential due to a finite volume of dielectric is given by

$$V = \frac{1}{4\pi\epsilon_0} \int_s \frac{\underline{P} \cdot d\underline{s}}{r} + \frac{1}{4\pi\epsilon_0} \int_\tau \frac{-\operatorname{div}\underline{P}}{r} \, d\tau$$

Interpret this result.

3. (a) Define the magnetic flux density \underline{B} and show that div $\underline{B} = 0$ in space.

By assuming the Amphere's law in integral form deduce the equation Curl $\underline{B} = \mu_0 \underline{j}$, where \underline{j} is the current density.

(b) Define the magnetic field strength \underline{H} in a magnetizable media and show that Curl $\underline{H} = \underline{j}$.

In the absent of current, if the magnetization is linearly proportional to <u>H</u>, show that there exists a function ϕ such that $\nabla^2 \phi = 0$.

- (c) A current I flows in a circular loop of wire of radius 'a'. Prove that the magnetic field at a point on the axis of the loop, at a distance z from its plane is directed along the axis and is of magnitude $\frac{Ia^2}{2(a^2+z^2)^{\frac{3}{2}}}$.
- (a) Derive an expression for the velocity v that a particle strikes the earth when it drops at a height h from the ground of the earth.
 - (b) Show that the Poisson's equation $\nabla^2 U = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dU}{dr} \right) = 4\pi\rho G$, for the gravitational potential U in a spherically symmetric distribution of matter having density ρ at a distance r from the center may be written as $\frac{1}{r} \frac{d^2}{dr^2} (rU) = 4\pi\rho G$.
 - A given spherical distribution of total mass M is given by,

$$\rho = \begin{cases} \rho_0 \frac{\sin\left(\frac{\pi r}{a}\right)}{\left(\frac{\pi r}{a}\right)} & \text{if } 0 \le r \le a\\ 0 & \text{if } r > a. \end{cases}$$

Show that $M = \frac{4\rho_0 a^3}{\pi}$. Prove that $U = -\frac{GM}{a} \left(1 + \frac{\rho}{\rho_0}\right)$ for $r \le a$. Calculate the self energy of the distribution in terms of G, H and a as compared with a state of infinite diffusion.