EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE (2003/2004) SECOND SEMESTER (JUNE/JULY.'2005)

MT 218 - FIELD THEORY

Proper

Answer all questions

Time: Two hours

- 1. State Gauss's theorem in the electro-static field.
 - (a) A charge q is uniformly distributed on a circle with equations $x^2 + y^2 = a^2, z = 0$. Show, with the usual notations that the potential at the point P(0, 0, z) is given by $\frac{q}{4\pi\epsilon_0\sqrt{a^2+z^2}}$. Prove that the electric field at P is $\frac{qz}{4\pi\epsilon_0(a^2+z^2)^{\frac{3}{2}}}$, where <u>k</u> is the unit vector along z axis.
 - (b) A spherical conductor of radius 'a' carrying a charge q_1 is surrounded by a concentric spherical conducting sheet of radius 'b' carrying a charge q_2 , both conductors being insulated. Find the potential at a point between the spheres.

If the inner conductor is connected by an insulated conducting wire, passing through a small hole in the outer conductor to a distant uncharged, insulated spherical conductor of radius 'c', prove that the later will be raised to a potential $\frac{q_1b + q_2a}{4\pi\epsilon_0b(a+c)}$.

1

- 2. (a) Show that the equation of the lines of force of a system of N collinear point charges q₁, q₂..., q_N is ^{i=N}_{i=1} q_i cos θ_i = C, where θ_i is the angle with the radius vectors drawn from the point charge q_i at any point of the line of force make with the line of charges and C is a constant.
 - (b) Let $q, -\lambda q$ be two charges placed at two points A and B respectively, where $(0 < \lambda < 1)$. Prove that the line of force separating the lines going from A to B, from those going from A to infinity leaves at angle $\cos^{-1}(1-2\lambda)$. Prove also that if $\sqrt{\lambda} > \sin\left(\frac{\alpha}{2}\right)$ a line of force leaving A at angle

 α with AB will end on B at an angle $2\cos^{-1}\left(\frac{1}{\sqrt{\lambda}}\sin\left(\frac{\alpha}{2}\right)\right)$.

3. (a) A current I flows in a circular loop of wire of radius 'a'. Prove that the magnetic field at a point on the axis of the loop, at a distance z from its plane is directed along the axis and is of magnitude $\frac{Ia^2}{2(a^2+z^2)^{\frac{3}{2}}}.$

(b) A plane circuit C is defined in plane polar coordinates as

$$r = \begin{cases} a & \text{if } 0 \le \theta \le \pi \\ -\frac{a}{\cos \theta} & \text{if } \pi \le \theta < \frac{3\pi}{2} \\ \frac{a}{\cos \theta} & \text{if } \frac{3\pi}{2} < \theta \le 2\pi \end{cases}$$

Show that the magnitude of the magnetic field at the origin, when the current I flows round C in the sense θ increasing is $\frac{I(\pi+2)}{4\pi a}$. 4. (a) Derive an expression for the velocity v that a particle strikes the earth when it drops at a height h from the ground of the earth.

Eus-

(b) Show that the Poisson's equation $\nabla^2 U = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dU}{dr} \right) = 4\pi \rho G$, for the gravitational potential U in a spherically symmetric distribution of matter having density ρ at a distance r from the center may be written as $\frac{1}{r} \frac{d^2}{dr^2} (rU) = 4\pi\rho G$. A given spherical distribution of total mass M is given by,

$$\rho = \begin{cases} \rho_0 \frac{\sin\left(\frac{\pi r}{a}\right)}{\left(\frac{\pi r}{a}\right)} & \text{if } 0 \le r \le a\\ 0 & \text{if } r > a. \end{cases}$$

Show that $M = \frac{4\rho_0 a^3}{\pi}$. Prove that $U = -\frac{GM}{a} \left(1 + \frac{\rho}{\rho_0}\right)$ for $r \leq a$. Calculate the self energy of the distribution in terms of G, H and a as compared with a state of infinite diffusion.