EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE (2003/2004) SECOND SEMESTER (JUNE/JULY.'2005)

MT 218 - FIELD THEORY

Proper

1. State Gauss's theorem in the electro-static field.
(a) A charge q is uniformly distributed on a circle with equations $x^{2}+y^{2}=a^{2}, z=0$. Show, with the usual notations that the potential at the point $P(0,0, z)$ is given by $\frac{q}{4 \pi \epsilon_{0} \sqrt{a^{2}+z^{2}}}$.
Prove that the electric field at P is $\frac{q z}{4 \pi \epsilon_{0}\left(a^{2}+z^{2}\right)^{\frac{3}{2}}} \underline{k}$, where $\underline{\underline{k}}$ is the unit vector along z axis.
(b) A spherical conductor of radius ' a ' carrying a charge q_{1} is surrounded by a concentric spherical conducting sheet of radius ' b ' carrying a charge q_{2}, both conductors being insulated. Find the potential at a point between the spheres.
If the inner conductor is connected by an insulated conducting wire, passing through a small hole in the outer conductor to a distant uncharged, insulated spherical conductor of radius ' c ', prove that the later will be raised to a potential $\frac{q_{1} b+q_{2} a}{4 \pi \epsilon_{0} b(a+c)}$.
2. (a) Show that the equation of the lines of force of a system of N collinear point charges $q_{1}, q_{2} \cdots, q_{N}$ is $\sum_{i=1}^{i=N} q_{i} \cos \theta_{i}=C$, where θ_{i} is the angle with the radius vectors drawn from the point charge q_{i} at any point of the line of force make with the line of charges and C is a constant.
(b) Let $q,-\lambda q$ be two charges placed at two points A and B respectively, where $(0<\lambda<1)$. Prove that the line of force separating the lines going from A to B, from those going from A to infinity leaves at angle $\cos ^{-1}(1-2 \lambda)$.
Prove also that if $\sqrt{\lambda}>\sin \left(\frac{\alpha}{2}\right)$ a line of force leaving A at angle α with $A B$ will end on B at an angle $2 \cos ^{-1}\left(\frac{1}{\sqrt{\lambda}} \sin \left(\frac{\alpha}{2}\right)\right)$.
3. (a) A current I flows in a circular loop of wire of radius ' a '. Prove that the magnetic field at a point on the axis of the loop, at a distance z from its plane is directed along the axis and is of magnitude $\frac{I a^{2}}{2\left(a^{2}+z^{2}\right)^{\frac{3}{2}}}$.
(b) A plane circuit C is defined in plane polar coordinates as

$$
r=\left\{\begin{array}{cll}
a & \text { if } & 0 \leq \theta \leq \pi \\
-\frac{a}{\cos \theta} & \text { if } & \pi \leq \theta<\frac{3 \pi}{2} \\
\frac{a}{\cos \theta} & \text { if } & \frac{3 \pi}{2}<\theta \leq 2 \pi
\end{array}\right.
$$

Show that the magnitude of the magnetic field at the origin, when the current I flows round C in the sense θ increasing is $\frac{I(\pi+2)}{4 \pi a}$.
4. (a) Derive an expression for the velocity v that a particle strikes the earth when it drops at a height h from the ground of the earth.
(b) Show that the Poisson's equation $\nabla^{2} U=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d U}{d r}\right)=4 \pi \rho G$, for the gravitational potential U in a spherically symmetric distribution of matter having density ρ at a distance r from the center may be written as $\frac{1}{r} \frac{d^{2}}{d r^{2}}(r U)=4 \pi \rho G$.
A given spherical distribution of total mass M is given by,

$$
\rho=\left\{\begin{array}{lll}
\rho_{0} \frac{\sin \left(\frac{\pi r}{a}\right)}{\left(\frac{\pi r}{a}\right)} & \text { if } & 0 \leq r \leq a \\
0 & \text { if } r>a
\end{array}\right.
$$

Show that $M=\frac{4 \rho_{0} a^{3}}{\pi}$.
Prove that $U=-\frac{G M}{a}\left(1+\frac{\rho}{\rho_{0}}\right)$ for $r \leq a$.
Calculate the self energy of the distribution in terms of G, H and a as compared with a state of infinite diffusion.

