EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE 2005/2006 \& 2006/2007
 SECOND SEMESTER (March/April 2008) -PROPER CH 103 STEREOCHEMISTRY AND KINETIC MOLECULAR THEORY

Time allowed: ONE Hour
Answer all questions
The use of a non-programmable calculator is permitted

1. i) Specify whether the following compounds are chiral or achiral.
a)

d)

(20 Marks)
ii) By giving reasons, specify the configurations of the following molecules as \mathbf{R} or \mathbf{S}.
a)

b)

c)

d)

Cont.
iii) Suggest a chemical/physical method to separate each of the following mixtures.
a) D-2-octylamine \& L-2-octylamine
b) Maleic acid $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ \& fumaric acid $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)$
c) D-2-octanol \& L-2-octanol
2) a. i) Write down the assumptions made in deriving the kinetic molecular theory of gas.
ii) Derive the equation $\mathrm{PV}=\frac{1}{3} \mathrm{mNC}^{2}$.
(20 Marks)

Where,
$\mathrm{m}=$ mass of a molecule of gas.
$\mathrm{P}=$ Pressure.
$\overline{C^{2}}=$ mean square velocity.
$N=$ no. of molecules of a gas.

$$
\mathrm{V}=\text { volume. }
$$

b. i) Compound $\underline{A}, \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2}$, liberated CO_{2} from NaHCO_{3} and was optically active. On hydrogenation, it yielded $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$, which was optically inactive. Suggest a structure for $\underline{\mathbf{A}}$ and explain the above reactions.
(25 Marks)
ii) When compound $\underline{B}(0.90 \mathrm{~g}), \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$, was treated with methylmagnesium iodide, it yielded methane ($448 \mathrm{~cm}^{3}$ at STP). Compound \underline{B} could be separated into two fractions by crystallization. Only one of these fractions could be resolved into optically active enantiomers. Suggest a structure for compound B.

