

EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE - 2005/2006 & 2006/2007

SECOND SEMESTER (Mar./ April., 2008)

MT 104 - DIFFERENTIAL EQUATIONS

AND

FOURIER SERIES

Proper & Repeat

Answer all questions

Time: Three hours

1. (a) State the necessary and sufficient condition for the differential equation

$$M(x,y)dx + N(x,y)dy = 0$$

to be exact.

[10 marks]

Hence solve the following differential equation

$$(\sin x \cos y + e^{2x})dx + (\cos x \sin y + \tan y)dy = 0$$

[30 marks]

(b) Show that the solution of the general homogeneous equation of the first order and degree $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$ is

$$\log x = \int \frac{dv}{f(v) - v} + C,$$

where $v = \frac{y}{x}$ and C is a constant.

[20 marks]

Hence solve the differential equation

$$(x^2 - y^2)dx + 2xy \, dy = 0.$$

[40 marks]

- 2. (a) If $F(D) = \sum_{i=0}^{n} p_i D^i$, where $D = \frac{d}{dx}$ and p_i , i = 1, 2, ..., n are constants with $p_0 \neq 0$, Prove the following formulas:
 - i. $\frac{1}{F(D)}e^{\alpha x} = \frac{1}{F(\alpha)}e^{\alpha x}$, where α is a constant and $F(\alpha) \neq 0$;
 - ii. $\frac{1}{F(D)}e^{\alpha x}V=e^{\alpha x}\frac{1}{F(D+\alpha)}V$, where V is a function of x.

[40 marks].

- (b) Find the general solution of the following differential equations by using the results in (a).
 - i. $(D^3 + 4D^2 + 4D)y = 8e^{-2x}$
 - ii. $(D^3 3D^2 6D + 8)y = x e^{-3x}$

[60 marks]

3. (a) Let $x + 1 = e^t$. Show that

$$(x+1)\,\frac{d}{dx}\equiv\mathcal{D},$$

and

$$(x+1)^2 \frac{d^2}{dx^2} \equiv \mathcal{D}^2 - \mathcal{D}.$$

where $\mathcal{D} \equiv \frac{d}{dt}$.

[20 marks]

Use the above results to find the general solution of the following differential equation

$$[(x+1)^2D^2 + (x+1)D - 1]y = \ln(x+1)^2 + x - 1.$$

[30 marks]

(b) With
$$\mathcal{D} \equiv \frac{d}{dt}$$
,

(b) With $\mathcal{D} \equiv \frac{d}{dt}$, solve the following simultaneous differential equations

$$(5D+4)y - (2D+1)z = e^{-x},$$

$$(D+8)y - 3z = 5e^{-x}.$$

[50 marks]

4. Use the method of Frobenius to obtain two linearly independent solutions in series for the following differential equation

$$4x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 7y = 0.$$

[100 marks]

(a) Write down the condition of integrability of the total differential equation

$$P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz = 0.$$

[5 marks]

Hence solve the following equation

$$yz \log z \, dx - zx \log z \, dy + xy \, dz = 0$$

[15 marks]

(b) Solve the following system of differential equations:

i.
$$\frac{dx}{x(y^2-z^2)} = \frac{dy}{y(z^2-x^2)} = \frac{dz}{z(x^2-y^2)}$$
;

ii.
$$\frac{dx}{2x} = \frac{dy}{-y} = \frac{dz}{4xy^2 - 2z}$$
.

[30 marks]

(c) Find the general solution of the following linear partial differential equations:

i.
$$z = px + qy + p^2 + pq + q^2$$
;

ii.
$$(y-z)p + (z-x)q = y-x$$
.

[30 marks]

(d) Apply Charpit's method or otherwise to find the complete and the singular solution of the following non-linear first-order partial differential equation

$$16p^2z^2 + 9q^2z^2 + 4z^2 - 4 = 0$$

Here,
$$p = \frac{\partial z}{\partial x}$$
 and $q = \frac{\partial z}{\partial y}$.

别人 月 月

[20 marks]

. (a) Obtain Fourier series expansion of

$$f(x) = \begin{cases} 2x & \text{when} \quad 0 \leqslant x < 3, \\ 0 & \text{when} \quad -3 < x < 0 \end{cases}$$

[40 marks]

(b) Use the finite Fourier transformation to show the solution of the partial differential equation

$$\frac{\partial V}{\partial t} = \frac{\partial^2 V}{\partial x^2},$$

subject to the boundary condition:

$$V(0,t) = 0$$
, $V(4,t) = 0$, $V(x,0) = 2x$, where $0 < x < 4$, $t > 0$

$$V(x,t) = \frac{-16}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} e^{\frac{-n^2 \pi^2 t}{16}} \cos n\pi \sin \frac{n\pi x}{4}.$$

[50 marks]

(c) Prove the following identities for Bessel function

i.
$$J_{-v}(x) = (-1)^v J_v(x), v > 1;$$

ii.
$$J'_v - \frac{v}{x} J_v(x) = -J_{v+1}(x)$$
.

[10 marks]