

EASTERN UNIVERSITY, SRI LANKA

(Mar./Apr.' 2008)
SECOND SEMESTER

ST 104 - DISTRIBUTION THEORY

(Proper and Repeat)
Answer all questions
Time : Three hours

Q1. (a) The trinomial distribution of two random variables X and Y is given by:

$$
\begin{gathered}
f_{X, Y}(x, y)=\frac{n!}{x!y!(n-x-y)!} p^{x} q^{y}(1-p-q)^{n-x-y} \\
\text { for } x, y=0,1, \cdots, n \text { and } x+y \leq n
\end{gathered}
$$

where $0 \leq p, 0 \leq q$ and $p+q \leq 1$.
(i) Find the marginal distribution of X and Y.
(ii) Find the conditional distributions of X and Y and obtain $F(Y / X=x)$ and $F(X / Y=y)$.
(iii) Find the correlation coefficient between X and Y.
(b) If $X_{1}, X_{2}, \cdots, X_{k}$ are k independent. Poisson variates with parameters $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}$ respectively, prove that the conditional distribution $P\left(X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{k}=x_{k} / X\right)$, where $X=X_{1}+X_{2}+\cdots, X_{k}$ is fixed, is multinomial.

Q2. A particular fast food outlet is interested in the joint behavior of the random variables Y_{1}, defined as the total time between a customer's arrival at the store and leaving the service window, and Y_{2}, the time that a customer waits in line before reaching the service window. Because Y_{1} contains the time a customer waits in line, we must have $Y_{1} \geq Y_{2}$, The relative frequency distribution of observed values of Y_{1} and Y_{2} can be modeled by the probability density function $f\left(y_{1}, y_{2}\right)= \begin{cases}e^{-y_{1}}, & 0 \leq y_{2} \leq y_{1}<\infty ; \\ 0, & \text { otherwise } .\end{cases}$
(a) Find $P\left(Y_{1}<2, Y_{2}>1\right)$;
(b) Find $P\left(Y_{1} \geq 2 Y_{2}\right)$.
(c) If 2 minutes elapse between a customer's arrival at the store and departure from the service window, find the probability that he waited in line less than 1 minute to reach the window.
(d) Are Y_{1} and Y_{2} independent?
(e) The random variable $Y_{1}-Y_{2}$ represents the time spent at the service window. Find $E\left(Y_{1}-Y_{2}\right)$ and $V\left(Y_{1}-Y_{2}\right)$. Is it highly likely that a customer would spend more than 2 minutes at the service window?

Q3. (a) Suppose that the length of time Y that, it takes a worker to complete a certain task has the probability density function.
$f(y)= \begin{cases}e^{-(y-\theta)}, & y>\theta \\ 0, & \text { elsewhere }\end{cases}$
where θ is a positive constant that represents the minimum time to task completion. Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ denote a random sample of completion times from this distribution.
i. Find the density function for $Y_{(1)}=\min \left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)$.
ii. Find $F\left(Y_{(1)}\right)$.
(b) A bottling machine can be regulated so that it discharges an average of μ ounces per bottle. It has been observed that the amount of fill dispensed by the machine is normally distributed with $\sigma=1.0$ ounce.
i. A sample of $n=9$ filled bottles is randomly selected from the output of the machine on a given day (all bottles is with the same machine setting) and the amount of fill measured for each. Find the probability that the sample mean, \bar{Y} be within 0.3 ounce of the true mean μ for that particular setting.
ii. How many observations should be included in the sample if we wish \bar{Y} to be within 0.3 ounce of μ with probability 0.95 ?
(a) Iet X, Y be a two-dimensional non-negative continuous random variables having the joint density:

$$
f(x, y)= \begin{cases}4 x y e^{-\left(x^{2}+y^{2}\right)}, & x \geq 0, y \geq 0 \\ 0, & \text { elsewhere }\end{cases}
$$

Prove the density function of $U=\sqrt{X^{2}+Y^{2}}$ is

$$
h(u)= \begin{cases}2 u^{3} e^{-u^{2}}, & 0 \leq u<\infty \\ 0, & \text { elsewhere }\end{cases}
$$

(b) Two efficiency experts take independent measurements Y_{1} and Y_{2} on the length of time it takes workers to complete a certain task. Each measurement is assumed to have the density function given by

$$
f(y)= \begin{cases}\frac{1}{4} y e^{-y / 2}, & y>0 \\ 0, & \text { elsewhere }\end{cases}
$$

Find the density function for the average $U=\frac{Y_{1}+Y_{2}}{2}$.
(c) Tet $Y_{1}, Y_{2}, \cdots, Y_{n}$ be a random sample from a normal distribution with mean μ and variance σ^{2}. Find $E\left(S^{2}\right)$ and $V\left(S^{2}\right)$ where $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$ and $Y=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$.

Q5. (a) If X has a. Poisson distribution

$$
P(X=r)=\frac{e^{-\lambda} \lambda^{r}}{r!}, r=0,1,2 \ldots
$$

where the parameter λ is a random variable of the continuous type with the density function

$$
f(\lambda)=\frac{a^{\nu} e^{-a \lambda} \lambda^{\nu-1}}{I^{\prime}(\nu)}, \lambda \geq 0, a>0, \nu>0,
$$

derive the distribution of X.
(b) Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ be a random sample of size n from a. normal distribution with mean μ and variance σ^{2}. Then show that $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ is normally distributed with a mean of μ and a variance of $\frac{\sigma^{2}}{n}$
(c) State the central limit theorem.

Q6. (a.) Given the joint density function of X and Y as

$$
f(x, y)= \begin{cases}\frac{1}{2} x e^{-y}, & 0<\mathrm{x}<2, \mathrm{y}>0 \\ 0, & \text { elsewhere }\end{cases}
$$

Find the distribution of $X+Y$.
(b) The random variable X has the probability density function

$$
\mathrm{f}(\mathrm{x})= \begin{cases}2 e^{-2 x}, & x>0 \\ 0, & \text { otherwise }\end{cases}
$$

Find the moment generating function of X and hence find the mean and variance of X.
Show also that the median of the distribution is $\frac{1}{2} \ln 2$ and the inter-quartile range is $\frac{1}{2} \ln 3$.

