EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE - $(2003 / 2004)$
(NOV./DEC.' 2004)
FIRST SEMESTER
MT 101 - FOUNDATION OF MATHEMATICS

Answer all questions
Time: Three hours

1. (a) Let p, q and r be three propositions. Prove the following:
i. $(p \wedge q) \vee>p \equiv>p \vee q$;
ii. $(p \wedge q) \longrightarrow r \equiv(p \longrightarrow r) \vee(q \longrightarrow r)$;
iii. $p \longrightarrow(q \longrightarrow r) \equiv(p \wedge>r) \longrightarrow>q$.
iv. $[>p \wedge(>q \wedge r)] \vee(q \vee r) \vee(p \wedge r) \equiv q \vee r$.
(b) Test the validity of the argument:

Either Aruni is Anura's sister or Rani is not Runil's wife.
Runil is Rani's husband or Aruni is not married.
Anura is a bachelor if and only if Aruni is not married.
Anura is married.

Therefore, Anura is Aruni's brother.
2. What is meant by a set?
(a) Let A, B and C be subsets of a universal set E. Prove the following:

$$
\begin{aligned}
& \text { i. }(A \backslash B) \backslash C \subseteq A \backslash(B \backslash C) \\
& \text { ii. } A \cap(B \triangle C)=(A \cap B) \triangle(A \cap C) \\
& \text { iii. } A \times(B \triangle C)=(A \times B) \triangle(A \times C)
\end{aligned}
$$

(b) At least 60% of a batch of students study Group Theory, at least 75% study Analysis, at least 80% study Statistics and at least 90% study Vector Calculus. What percentage (at least) must study all four subjects?
3. What is meant by an equivalence relation on a set?
(a) Let A be a set and let \sim be an equivalence relation on A. Prove the following:
i. $[a] \neq \phi \forall a \in A$;
ii. $a \sim b \Leftrightarrow[a]=[b] \forall a, b \in A$;
iii. $b \in[a] \Leftrightarrow[a]=[b] \forall a, b \in A$;
iv. Either $[a]=[b]$ or $[a] \cap[b]=\phi \forall a, b \in A_{\text {; }}$
(b) Let $S=\left\{(x, y) \in \mathbb{R}^{2} / x \neq 0, y \neq 0\right\}$.

Define a relation ρ on S by
$(x, y) \rho\left(x_{1}, y_{1}\right) \Leftrightarrow\left(x y_{1}\right)^{2}=\left(y x_{1}\right)^{2}$ for any $(x, y),\left(x_{1}, y_{1}\right) \in S$. Show that ρ is an equivalence relation.

Show also that $(x, y) \rho\left(x_{1}, y_{1}\right)$ if and only if there is a non-zero real number k such that $x=k x_{1}, y= \pm k y_{1}$. Sketch the ρ-class of the element $(1,2)$.
4. (a) Define the following terms:
i. Injective function;
ii. Surjective function;
iii. Bijective function;
(b) $f: S \rightarrow T$ be a function and let A, B be subsets of S
i. Prove that $f(A \cap B) \subseteq f(A) \cap f(B)$.
ii. Prove that $f(A \cup B)=f(A) \cup f(B)$.
iii. Is it true that $f(A) \cap f(B) \subseteq f(A \cap B)$? Justify your answer.
(c) If f, g and h are mapping from a set X to X such that $f \circ g=h \circ f=I_{X}$, the identity mapping from X to X , then show that f is a bijective and $f^{-1}=g=h$.
5. (a) Define the term "partially ordered set".

State when a partially ordered set becomes totally ordered set. let A be a non-empty set and $P(A)$ a power set of A. Define a relation ' \preceq ' on $P(A)$ as $X \preceq Y$ if and only if X is a subset of Y. Prove that $(P(A), \preceq)$ is a partially ordered set.
Prove also that $(P(A), \preceq)$ is not a totally ordered set if and only if $|A|>1$.
(b) Define the following elements of a partially ordered set.
i. First element,
ii. Last element,
iii. Minimal element.

Show that every partially ordered set has at most one first element and at most one last element.

Show also that if a totally ordered set (A, \preceq) has minimal element, then it will be the first element.
6. (a) Define the following:
i. Greatest common divisor (gcd) of two integers,
ii. A prime number.
(b) Prove that any integer $n>1$ can be expressed uniquely (except for order) as a product of primes.
(c) Let $\operatorname{gcd}(a, b)=d$, where a and b are integers. Prove the following: i. $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$,
ii. For any integer $x, \operatorname{gcd}(a, b)=\operatorname{gcd}(a, b+a x)$.
(d) Prove that if $p \mid a b$, then $p \mid a$ or $p \mid b$, where p is a prime.
(e) State necessary and sufficient condition for a linear Diaphantine equation $a x+b y=c$ has a solution.
Find the general solution (if there exists) of the following linear Diaphantine equations:
i. $2 x+3 y=4$,
ii. $10 x-8 y=3$.

