EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE- REPEAT

EXTERNAL DEGREE – 1998/1999

EXCH 203 BORON CHEMISTRY, SILICATES, PHASE RULE AND X-RAY CRYSTALLOGRAPHY

Time: 02 hours

ANSWER FOUR QUESTIONS ONLY

(a) Discuss the type of bonding and structures of the following boron compounds 1. using Wade's rule.

(i) B₅H₁₁

(ii) C2B3H5

- (b) What are the types of borane that exist, relating their structure with its' composition? Briefly describe each of them.
- (a) How can the following transformations be effected through organometallic 2. intermediate(s)?

1. OH
$$H \stackrel{\downarrow}{\longrightarrow} H$$
2. B_2H_6 \longrightarrow $H \stackrel{\uparrow}{\longrightarrow} H$

(b) Write balanced equations to show the reactions of B₃N₃H₃Cl₃ with

(i) NaBH₄

(ii) CH₃MgBr

(iii) RNH₂

(iv) AlCl₃/C₆H₆

- (c) (i) Derive the 'styx' number for B₄H₁₀
 - (ii) Draw the schematic diagram corresponding to the 'styx' number.
- (a) Describe the structure of 'talc. 3.
 - (b) On which basis, silicates are classified? Briefly describe the structure of any two of them.
 - (c) Discuss the chemical uses of zeolites.

- 4. (a) (i) Calculate the Miller indices of planes whose intercepts on a, b and c axes are
 - (I) a, ∞b, 2 c
 - (II) $\alpha a, \frac{2}{3} b, \frac{1}{3} c$
 - (ii) Show, in clearly drawn diagrams, the positions of the above planes in the cubic unit cell.
 - (b) Sketch the following types of lattices
 - (I) a face centered cubic
 - (II) a body centered cubic.
- 5. (a) State the phase rule and identify the terms in it.
 - (b) (i) Explain briefly the terms 'phase' and 'Component' of a system.
 - (ii) Using phase rule, calculate the number of phases, components and degree of freedom of the following,
 - (I) Thermal decomposition of calcium carbonate.
 - (II) Saturated NaCl solution.
 - (c) Boiling point of a binary solution of A and B is 88° C when the mole fraction of A, $X_A = 0.6589$. At this temperature the vapour pressure of pure A and B are 957 and 379.5 torr respectively.
 - (i) Find out whether this is an ideal solution or not.
 - (ii) What is the initial composition of the vapour in the system?
- 6. (a) Explain, using diagrams the following terms
 - (i) Triple point
 - (ii) Eutectic point
 - (b) Methyl ether (A) and diborane B₂H₆ (B) form a compound AB that melts congruently at 133 K. The system exhibits two eutectics, one at 25 mole percent B and 123 K and a second at 90 mole percent B and 104 K. The melting points of pure A and B are 131K and 110K respectively.

Sketch the phase diagram for this system. (Assume: Solid-solid solubility is negligible)