EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE 2003/2004

(Nov./Dec.'2004)

FIRST SEMESTER

MT 103 - VECTOR ALGEBRA \& CLASSICAL MECHANICS I

Answer all questions

Time: Three hours

1. (a) For any three vectors $\underline{a}, \underline{b}, \underline{c}$, prove that the identity

$$
\underline{a} \wedge(\underline{b} \wedge \underline{c})=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c} .
$$

Hence show that

$$
(\underline{a} \wedge \underline{b}) \cdot[(\underline{b} \wedge \underline{c}) \wedge(\underline{c} \wedge \underline{a})]=[\underline{a} \cdot(\underline{b} \wedge \underline{c})]^{2} .
$$

(b) The vectors $\underline{\alpha}, \underline{\beta}, \underline{\gamma}$ are defined, in terms of vectors $\underline{a}, \underline{b}, \underline{c}$ by

$$
\underline{\alpha}=\frac{\underline{b} \wedge \underline{c}}{V}, \underline{\beta}=\frac{\underline{c} \wedge \underline{a}}{V}, \underline{\gamma}=\frac{\underline{a} \wedge \underline{b}}{V},
$$

where $V=\underline{a} \cdot \underline{b} \wedge \underline{c} \neq 0$.
Show that $\underline{\alpha} \cdot \underline{\beta} \wedge \underline{\gamma}=\frac{1}{V}$. Show also that any vector \underline{r} can be expressed in the form

$$
\underline{r}=(\underline{r} \cdot \underline{\alpha}) \underline{a}+(\underline{r} \cdot \underline{\beta}) \underline{b}+(\underline{r} \cdot \underline{\gamma}) \underline{c} .
$$

(c) Find \underline{x} in terms of \underline{a} and \underline{b} if $\underline{x} \wedge \underline{a}=\underline{b}-\underline{x}$.
2. (a) Define the following terms:
i. the gradient of a scalar field ϕ;
ii. the divergence of a vector field \underline{F};
iii. the curl of a vector field $\underset{F}{ }$.
(b) Prove the following:
i. $\operatorname{div}(\phi \underline{F})=\phi \operatorname{div} \underline{F}+\operatorname{grad} \phi \cdot \underline{F}$;
ii. $\operatorname{curl}(\phi \underline{F})=\phi \operatorname{curl} \underline{F}+\operatorname{grad} \phi \wedge \underline{F}$.
(c) Let $\underline{r}=x \underline{i}+y \underline{j}+z \underline{\underline{k}}$ and $r=|\underline{r}|$ and let \underline{a} be a constant vector. Evaluate the following:
i. $\operatorname{grad}(\underline{a} \cdot \underline{r})$;
ii. $\operatorname{curl}(\underline{a} \wedge \underline{r})$.

Hence Show that
i. $\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^{3}}\right)=\frac{\underline{a}}{r^{3}}-\frac{3(\underline{a} \cdot \underline{r})}{r^{5}} \underline{r}$;
ii. $\operatorname{curl}\left(\frac{\underline{a} \wedge \underline{r}}{r^{3}}\right)=\frac{2 \underline{a}}{r^{3}}+\frac{3(\underline{a} \wedge \underline{r})}{r^{5}} \wedge \underline{r}$.
3. (a) State the Green's theorem in the plane.

Verify the Green's theorem in the plane for

$$
\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y
$$

where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
(b) State the Stoke's theorem.

Verify the Stoke's theorem for a vector

$$
\underline{A}=(2 x-y) \underline{i}-y z^{2} \underline{j}-y^{2} z \underline{k}
$$

where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
4. Prove that the radial and transverse component of the acceleration of a particle in a plane in terms of polar co-ordinates (r, θ) are

$$
\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2} \quad \text { and } \quad \frac{1}{r} \frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right) \quad \text { respectively. }
$$

Two particles each of mass m are connected by a light in-extensible string and are lying on a smooth horizontal table with the string taut. The string passes through a small ring O fixed to the table at a point distance ' a ' from the first particle. The first particle is given horizontal velocity v perpendicular to the string. Prove that it's subsequent path until the second particle reaches O as the polar equation $r=a \sec (\theta / \sqrt{2})$ relative to O. Prove also that if the particle is reached a distance r after time t then $r^{2}=a^{2}+\frac{1}{2} v^{2} t^{2}$.
5. A particle moves in a plane with velocity v and the tangent to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the components of acceleration of the particle along the tangent and perpendicular to it are $\frac{d v}{d t}$ and $v \frac{d \psi}{d t}$ respectively.

A smooth wire in the form of an arc of a cycloid which equation is $s=4 a \sin \psi$, is fixed in a vertical plane with the vertex downwards and the tangent at vertex horizontal. A small bead of mass m is threaded on the wire and is projected from the vertex with speed $\sqrt{8 a g}$. If the resistance of the medium in which the motion take place is $m v^{2} / 8 a$ when the speed is v. Show that the bead comes to instantaneous rest at a cusp $(\psi=\pi / 2)$ and returns to the starting point with speed $\sqrt{8 g a\left(1-2 e^{-1}\right)}$.
6. State the angular momentum principle.

A right circular cone with a semi vertical angle α is fixed with its axis vertical and vertex downwards. A particle of mass m is held at the point A on the smooth inner surface of the cone at a distance ' a ' from the axis of revolution. The particle is projected perpendicular to $O A$ with velocity ' u ', where O is the vertex of the cone. Show that the particle rises above the level of A if

$$
u^{2}>a g \cot \alpha
$$

and greatest reaction between the particle and the surface is

$$
m g\left(\sin \alpha+\frac{u^{2}}{a g} \cos \alpha\right)
$$

