2 5 OCT 200

University, SI

*

LIBRAR

EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE 2003/2004

(Nov./Dec.'2004)

FIRST SEMESTER

MT 103 - VECTOR ALGEBRA & CLASSICAL

MECHANICS I

Answer all questions Time: Three hours

1. (a) For any three vectors \underline{a} , \underline{b} , \underline{c} , prove that the identity

$$\underline{a} \wedge (\underline{b} \wedge \underline{c}) = (\underline{a} \cdot \underline{c})\underline{b} - (\underline{a} \cdot \underline{b})\underline{c}$$
.

Hence show that

$$(\underline{a} \wedge \underline{b}) \cdot [(\underline{b} \wedge \underline{c}) \wedge (\underline{c} \wedge \underline{a})] = [\underline{a} \cdot (\underline{b} \wedge \underline{c})]^2$$

(b) The vectors $\underline{\alpha}$, $\underline{\beta}$, $\underline{\gamma}$ are defined, in terms of vectors \underline{a} , \underline{b} , \underline{c} by

$$\underline{\alpha} = \frac{\underline{b} \wedge \underline{c}}{V} , \ \underline{\beta} = \frac{\underline{c} \wedge \underline{a}}{V} , \ \underline{\gamma} = \frac{\underline{a} \wedge \underline{b}}{V}$$

where $V = \underline{a} \cdot \underline{b} \wedge \underline{c} \neq 0$. Show that $\underline{\alpha} \cdot \underline{\beta} \wedge \underline{\gamma} = \frac{1}{V}$. Show also that any vector \underline{r} can be expressed in the form

$$\underline{r} = (\underline{r} \cdot \underline{\alpha})\underline{a} + (\underline{r} \cdot \beta)\underline{b} + (\underline{r} \cdot \underline{\gamma})\underline{c} .$$

(c) Find \underline{x} in terms of \underline{a} and \underline{b} if $\underline{x} \wedge \underline{a} = \underline{b} - \underline{x}$.

2. (a) Define the following terms:

- i. the gradient of a scalar field ϕ ;
 - ii. the divergence of a vector field \underline{F} ;

iii. the curl of a vector field \underline{F} .

(b) Prove the following:

i.
$$\operatorname{div}(\phi \underline{F}) = \phi \operatorname{div} \underline{F} + \operatorname{grad} \phi \cdot \underline{F};$$

- ii. $\operatorname{curl}(\phi \underline{F}) = \phi \operatorname{curl} \underline{F} + \operatorname{grad} \phi \wedge \underline{F}$.
- (c) Let $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ and $r = |\underline{r}|$ and let \underline{a} be a constant vector. Evaluate the following:
 - i. $\operatorname{grad}(\underline{a} \cdot \underline{r})$;
 - ii. $\operatorname{curl}(\underline{a} \wedge \underline{r})$.

Hence Show that

i. $\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^3}\right) = \frac{\underline{a}}{r^3} - \frac{3 \ (\underline{a} \cdot \underline{r})}{r^5} \ \underline{r} ;$

ii.
$$\operatorname{curl}\left(\frac{\underline{a}\wedge\underline{r}}{r^3}\right) = \frac{2\underline{a}}{r^3} + \frac{3\ (\underline{a}\wedge\underline{r})}{r^5}\wedge\underline{r}$$

3. (a) State the Green's theorem in the plane.

Verify the Green's theorem in the plane for

$$\oint_C (xy+y^2)dx + x^2dy$$

where C is the closed curve of the region bounded by y = x and $y = x^2$.

(b) State the Stoke's theorem.

Verify the Stoke's theorem for a vector

$$\underline{A} = (2x - y) \ \underline{i} - yz^2 \ j - y^2 z \ \underline{k}$$

where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.

 $x - y = g \wedge x$ if g = ha 2 = ha constant <math>g half (a)

4. Prove that the radial and transverse component of the acceleration of a particle in a plane in terms of polar co-ordinates (r, θ) are

$$\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2$$
, and $\frac{1}{r}\frac{d}{dt}\left(r^2\frac{d\theta}{dt}\right)$ respectively.

Two particles each of mass m are connected by a light in-extensible string and are lying on a smooth horizontal table with the string taut. The string passes through a small ring O fixed to the table at a point distance 'a' from the first particle. The first particle is given horizontal velocity v perpendicular to the string. Prove that it's subsequent path until the second particle reaches O as the polar equation $r = a \sec(\theta/\sqrt{2})$ relative to O. Prove also that if the particle is reached a distance r after time t then $r^2 = a^2 + \frac{1}{2}v^2t^2$.

5. A particle moves in a plane with velocity v and the tangent to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the components of acceleration of the particle along the tangent and perpendicular to it are $\frac{dv}{dt}$ and $v\frac{d\psi}{dt}$ respectively.

A smooth wire in the form of an arc of a cycloid which equation is $s = 4a \sin \psi$, is fixed in a vertical plane with the vertex downwards and the tangent at vertex horizontal. A small bead of mass m is threaded on the wire and is projected from the vertex with speed $\sqrt{8ag}$. If the resistance of the medium in which the motion take place is $mv^2/8a$ when the speed is v. Show that the bead comes to instantaneous rest at a cusp ($\psi = \pi/2$) and returns to the starting point with speed $\sqrt{8ga(1-2e^{-1})}$.

6. State the angular momentum principle.

A right circular cone with a semi vertical angle α is fixed with its axis vertical and vertex downwards. A particle of mass m is held at the point A on the smooth inner surface of the cone at a distance 'a' from the axis of revolution. The particle is projected perpendicular to OA with velocity 'u', where O is the vertex of the cone. Show that the particle rises above the level of A if

I. Prove that the radial and transverse component of the model

$$u^2>ag\cotlpha$$

and greatest reaction between the particle and the surface is

of the particle makes an angle W with a fixed line in the plane. Prove

that the components of acceleration of the particle slolls the tangent

$$mg\left(\sinlpha+\frac{u^2}{ag}\coslpha
ight).$$