EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE (2003/2004)
Nov./Dec.' 2004
FIRST SEMESTER
Proper \& Repeat

MT 106-TENSOR CALCULAS

Answer all questions

Time : one hour

1. (a) Write the transformation equation for the following tensors.
i. $A_{q r}^{m s}$,
ii. $B_{m n}^{p q r}$,
iii. $C_{i j k}$.
(b) Define the terms symmetric and skew-symmetric tensors.
i. If $d s^{2}=g_{i j} d x^{i} d x^{j}$ is an invariant, show that $g_{i j}$ is a symmetric covariant tensor of rank two.
ii. If $A^{p q}$ and $B_{r s}$ are skew-symmetric tensors, show that $C_{r s}^{p q}=A^{p q} B_{r s}$ is a symmetric tensor.
(c) The covariant components of a tensor in rectangular co-ordinate system are $y z, 3,2 x+y$. Find its contravariant components in cylindrical coordinates (ρ, θ, z)
2. (a) Define the following:
i. Christoffel symbols of first and second kind;
ii. Geodesics.
(b) Determine the Christoffel symbol of second kind for the line element

$$
d s^{2}=\left(d x^{1}\right)^{2}+\left[\left(x^{2}\right)^{2}-\left(x^{1}\right)^{2}\right]\left(d x^{2}\right)^{2}
$$

and find the corresponding Geodesic equations.
(c) With the usual notations, prove the following:
i. $\frac{\partial g_{r s}}{\partial x^{m}}=[r m, s]+[s m, r]$,
ii. $\frac{\partial g^{r s}}{\partial x^{m}}=-g^{r n} \Gamma_{m n}^{s}-g^{s n} \Gamma_{m n}^{p}$,
iii. $\Gamma_{p q}^{p}=\frac{\partial \ln \sqrt{g}}{\partial x^{q}}$.

