## EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE - 2003/2004
FIRST SEMESTER
(NOV/DEC 2004)

PH101 - MECHANICS I

Time: 01 hour.
Answer ALL questions

1. Define the terms velocity and acceleration in Kinematics. The position vector of a particle is given by $\underline{r}=x \underline{i}+y \underline{j}+z \underline{k}$. Write down the expressions for instantaneous velocity and acceleration of the particle.
(a) A particle's position vector is given by

$$
|x|=t^{3}-2 t^{2}+t+2
$$

Find
(i) Velocity of the particle at time $t$.
(ii) Acceleration of the particle at time $t$.
(iii) The time at which the velocity is zero.
(b) A particle's acceleration is given by

$$
\underline{a}=2 \underline{t} \underline{i}+3 \underline{j}
$$

At time $\mathrm{t}=0$, particle is located at origin and moving with velocity $2 \underline{i}+\underline{j}$. Find the velocity and displacement of the particle as a function of time.
2. Define work and power in Mechanics

A particle of constant mass $m$ moves under the influence of a force field $\underline{F}$. Assuming that at times $\mathrm{t}_{1}$ and $\mathrm{t}_{2}$ the velocity of the particle is $\underline{v}_{1}$ and $\underline{v}_{2}$ respectively. Prove that

$$
\int_{t_{1}}^{t_{2}} \underline{F} \cdot d \underline{r}=\frac{1}{2} m\left|\underline{\nu}_{2}\right|^{2}-\frac{1}{2} m\left|\underline{v}_{1}\right|^{2}
$$

A particle of mass 1 Kg moves in a force field given by

$$
\underline{F}=3 t^{2} \underline{i}+2 t \underline{j}
$$

At $\mathrm{t}=0$, the particle has velocity $3 \underline{i}+4 \underline{j}$.
Find
(i) The velocity and momentum of the particle as a function of time.
(ii) The kinetic energy of the particle when $t=1$ and $t=2$.
(iii) The work done in moving the particle from the point when $t=1$ to the point when $t=2$.
(iv) Impulse of the particle in moving the particle from $t=1$ to $t=2$.

Using the above results verify Work-Energy theorem and Newton's $2^{\text {nd }}$ law of motion.

