

EASTERN UNIVERSITY, SRI LANKA
THIRD EXAMINATION IN SCIENCE - 2005/2006
SECOND SEMESTER(March/April, 2008)
MT 310-FLUID MECHANICS (凶) (PROPER AND REPEAT)

Answer all Questions

Time: Two hours

Q1. (a) With the usual notation, write down the equation of continuity and the condition for a surface $F(r, t)=0$, where $r=x \underline{\mathbf{i}}+y \underline{\mathbf{j}}+z \underline{\mathbf{k}}$, to be a boundary surface. Hence, show that the surface

$$
\left(\frac{x^{2}}{a^{2}}\right) f_{1}(t)+\left(\frac{y^{2}}{b^{2}}\right) f_{2}(t)+\left(\frac{z^{2}}{c^{2}}\right) f_{3}(t)=1
$$

where f_{1}, f_{2} and f_{3} are functions of time t, and a, b and c are contants, is a possible boundary surface of an incompressible fluid if $f_{1} f_{2} f_{3}$ is a constant. [60 marks]
(b) Obtain Cauchy-Reimann equations for an irrotational motion of an incompressible fluid in two-dimensions. If the stream function of this fluid is

$$
(x-a)^{2}-(y-b)^{2}+c,
$$

where a, b and c are constants, find the velocity potential.
[40 marks]

Q2. (a) State and prove the Euler's equation of motion of an inviscid fluid. [30 marks]
(b) A rectangular coffee cup is placed on a turntable and rotated about its central axis with angular velocity Ω until a rigid body mode occurs. If the pressure
at the point of intersection of the central axis and the base of the coffee cup is p_{0}, show that the free surface of equal pressure of the coffee is a parabolid revolution and the centre of the coffee drops by an amount

$$
\frac{\Omega^{2} R^{2}}{4 g}
$$

where $2 R$ is the length of the base of the coffee cup and g is the gravitational acceleration.

Find the angular velocity which will cause the coffee to just reach the tip of the cup if $R=3 \mathrm{~cm}$, the height between the high and low points of free surface is 6 cm and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

Q3. (a) State the Milne-Thomson circle theorem.
(b) An incompressible fluid moves steadily and irrotationally under no external forces parallel to the z-plane past a fixed cylinder whose section in that plan is bounded by a closed curve \mathcal{C}. If the complex potential for the flow is w, prove that the action of the fluid pressure on the cylinder is equivalent to a force per unit having components X and Y along the x and y-axes, respectively, and a moment M about the origin O, where

$$
Y+i X=-\frac{1}{2} \rho \oint_{\mathcal{C}}\left(\frac{d w}{d z}\right)^{2} d z
$$

and

$$
M=\operatorname{Re}\left\{-\frac{1}{2} \rho \oint_{\mathcal{C}} z\left(\frac{d w}{d z}\right)^{2} d z\right\}
$$

[40 marks]
A source, where rate of emission is k units of the volume per unit time, is at A such that $O A=f$, where f is real, outside a circular cylinder of radius a whose centre is at the origin O.
(i) Show that the image system for the source at A consists of an equal source at the inverse point of A and an equal sink at the centre O of the cylinder.
(ii) By finding the force acting on the cylinder, show that the cylinder will be attracted towards the source.
[50 marks]
Q4. (a) If a solid boundary of a large spherical surface contains fluid in motion and encloses closed surfaces $S_{m}, m=1, \ldots, k$, write down the equation for the kinetic energy of the moving fluid when it is at rest at infinity.
(b) If the velocity potential ϕ of such a fluid described in part (a) satisfies the Laplace's equation $\nabla^{2} \phi=0$ and $\frac{\partial \phi}{\partial n}$ is a given function on $S_{m}, m=1, \ldots, k$, show that ϕ is determined uniquely throughout a finite region. [35 marks]
(c) Suppose a puff of hot gas rises through air and it takes a roughly spherical shape. The air is sucked into the gas near the rear of the sphere which has fixed centre and radius a at time t. The mathematical model of the system is given by

$$
\begin{gathered}
\nabla^{2} \phi=0, r>a, \\
\phi \simeq U r \cos \theta \text { as } r \longrightarrow \infty,
\end{gathered}
$$

where r is the distance from the centre O of the puff to a point P_{n} in air and θ is the angle between $O P$ and the direction of velocity of the air, with boundary condition

$$
\left(\frac{\partial \phi}{\partial r}\right)_{r=a}=\frac{1}{5} v\left(1-3 \cos \theta-3 \cos ^{2} \theta\right),
$$

where ϕ is the velocity potential, U is the constant velocity of the air and v is a constant. Show that

$$
\phi=U r \cos \theta+\frac{U a^{3}}{2 r^{2}} \cos \theta
$$

What is the significance of the above result?

In spherical polar coordinates (r, θ, ψ),

$$
\nabla^{2} \equiv \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta}\left(\frac{\partial^{2}}{\partial \psi^{2}}\right)
$$

and you may use the solution of $\nabla^{2} \phi=0$ without proof.

