

Fastern University, Sci Land

EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE – 2003/2004 SECOND SEMESTER

(June/July-2005)

CH104 ORGANIC REACTION MECHANISM AND CHEMICAL KINETICS

Answer all questions

Time: 01 hour

- 1) a(I) Distinguish between a transition state and an intermediate
 - (II) Compare S_N^1 and S_N^2 reaction mechanism with respect to
 - i. Order
 - ii. Number of steps
 - iii.Rate and concentration of substrate and reactants
 - iv.Stereochemistry
 - v. Nucleophile
 - vi.Rearrangements
 - (III)Explain why the rate of an S_N¹ reaction decreases as follows

3°halide fastest — 1° halide slowest

b. (I) Give two examples for strong and weak nucleophile respectively (II)The nitration of benzene can be represented as follows,

$$\begin{array}{c|c} & H & NO_2 \\ \hline & NO_2^+ & \hline \\ & slow & \hline \end{array}$$

- (i) On the basis of mechanism draw and fully label the graph of free energy VS reaction co-ordinate for above reaction. Label the position of reactants, transition state(s), intermediate and product(s)
- (ii) Write a rate law for this reaction
- (iii) On the same graph in (i) draw the free energy profile for
 - a. The nitration of toluene
 - b. The nitration of benzoic acid

- c. Arrange the following compounds in order by increasing basic strength
 - (I) Ammonia, Methyl amine, Dimethyl amine, Chloroamine

(II)

$$NH_2$$
 NH_2 NH_2

- 2)a(i) What is meant by the term half-life of a reaction
 - (ii) A nuclear decomposition follows first order kinetics. A certain radioactive production of a nuclear reaction must be stored until it is 99.9% decomposed. If its half life 5000 years, for how long it must be stored.
 - (iii) The thermal decomposition of N_2O_5 follows a first order kinetics. If the rate constant at 25°C is 1.7 X 10^{-5} sec⁻¹ at what rate does N_2O_5 decompose at this temperature (Partial pressure is 50.0 KPa, Gas constant(R) = 8.314 Jmol⁻¹K⁻¹)
- b(i). What is meant by the term steady state approximation in chemical kinetics.

(ii).

$$A = \frac{K_1}{K_2} B \qquad B + C = \frac{K_3}{K_3} D$$

Determine the rate of expression for above reaction in terms of rate constants K_l , K_l and the P_A , P_B , P_C & P_D (P_A , P_B , P_C and P_D are partial pressure of A,B,C are respectively).

If the concentration of B is small compared with the concentration of A, C, D, show this reaction may follow 1st order equation at high pressure and 2nd order equation at pressure.

c. Explain the following observation
