EASTERN UNIVERSITY, SRI LANKA

FIRST YEAR EXAMINATION IN SCIENCE

2003/2004

SECOND SEMESTER

(June/July - 2005)
Proper \& Repeat
MT 105-THEORY OF SERIES

Answer All Questions
Time: 1 Hour

Q1. (a) Define what is meant by the infinite series $\sum_{n=1}^{\infty} a_{n}$ is convergent.
[5 Marks]
Show that the series

$$
\sum_{n=1}^{\infty} \frac{1}{(4 n-1)(4 n+3)}=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\ldots
$$

is convergent and find its sum.
[30 Marks]
(b) State the theorem of Integral Test.
[10 Marks]
By using the above theorem or otherwise, for the following cases of $p \in \mathbb{R}$,
(i) $p>1$,
(ii) $p=1$,
(iii) $0<p<1$,
determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ converges or diverges. [15 Marks]
(c) State the theorem of Alternating Series Test.
[10 Marks]
Use the above theorem to decide whether the following series converge or diverge:
(i) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n}}$;
(ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{(3 n-1)}$.

Q2. (a) For the power series $\sum_{n=1}^{\infty} \frac{n(x-1)^{n}}{2^{n}(3 n-1)}$, find the interval and radius of convergence.
[25 Marks]
(b) (i) Let $f_{n}, f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$. Define what is meant by $f_{n} \rightarrow f$ as $n \rightarrow \infty$ uniformly on A.
(ii) Let $f_{n}, f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$. If $f_{n} \rightarrow f$ uniformly on A as $n \rightarrow \infty$ and each $f_{n}, n \in \mathbb{N}$ is continuous on A, then prove that f is continuous on A.
[20 Marks]
(iii) Let $f_{n}, f:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}$ and let $f_{n} \rightarrow f$ uniformly on $[a, b]$ as $n \rightarrow \infty$ and each $f_{n}, n \in \mathbb{N}$ be continuous on $[a, b]$. Show that

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x
$$

[20 Marks]
(c) (i) Show that

$$
\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad \text { for }|x|<1
$$

[15 Marks]
(ii) Use the result in part(i) and the Abel's theorem to show that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

