

EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2005/2006 (Aug./Sep.' 2007) FIRST SEMESTER ST 201 - STATISTICAL INFERENCE - I (Repeat)

Answer all questions

Q1. (a) Define

- i. A maximum likelihood estimator,
- ii. An unbiased estimator.
- (b) Let X be the number of success in a binomial experiment with n trials and the probability of success p. Find the maximum likelihood estimate for p and show that it is unbiased. Derive the variance of this estimator. Is this estimator consistent? Justify your answer.
 - (c) A random sample of *n* observations X_1, X_2, \dots, X_n is taken on a random variable X which has a normal distribution with mean μ and variance σ^2 . Assuming σ^2 is known, find
 - i. The method of moments estimate for μ ;
 - ii. The maximum likelihood estimate for μ .

- Q2. A random sample X_1, X_2, \dots, X_n is taken from a poisson distribution with mean λ and it is required to estimate $\theta = \lambda^2$.
 - (a) Show that the sample mean, \bar{X} , is a sufficient statistic for θ .
 - (b) Evaluate $E(\bar{X})$ and $E(\bar{X}^2)$ and hence find an unbiased estimator of θ based on \bar{X} .
 - (c) Find the Cramer Rao lower bound for the variance of unbiased estimators of θ .
 - (d) Find the efficiency of your estimator.
- Q3. (a) Describe the Neyman Pearson approach to testing one simple hypothesis against another simple hypothesis.
 - (b) The number of complaints in successive weeks about a certain product are denoted by X₁, X₂, · · · , X_n. These random variables are independent, Poisson with mean μθ, where μ is known and θ is unknown. It is required to test the null hypothesis H₀: θ = 1 against the alternative H₁: θ = 2.
 - i. A test has a critical region $\{X_1, X_2, \cdots, X_n : \sum_{i=1}^n X_i > m\}$ where *m* is a constant to be chosen so that the test has the required significance level. Show that this is the Neyman - Pearson test.
 - ii. State, with reasons whether this test is uniformly most powerful for the hypothesis $H_0: \theta = 1$ against the alternative $H_1: \theta > 1$.
 - iii. Suppose that $\mu = \frac{1}{2}$, n = m = 2. Find the significance level and power of the test at $\theta = 2$.
- Q4. (a) Define Type I error and Type II error.

(b) Let X_1, X_2, \dots, X_n be random samples from a normal population with parameters μ and σ^2 ($\sigma^2 = 4$). The test is $H_0: \mu = 0$ Vs $H_1: \mu = 1$. The critical region is given by $\left\{ \underline{X} : \sum_{i=1}^n X_i > k \right\}$. If $\alpha = \beta = 0.01$ then find the critical region, where

 $\alpha = P(Type \ I \ error)$ and $\beta = P(Type \ II \ error)$

- (c) Let X_1, X_2, \dots, X_n be independent random samples from normal population with mean μ and variance σ^2 . Show that,
 - i. the statistic $\hat{\mu} = \frac{1}{n+1} \sum_{i=1}^{n} X_i$ is biased for μ . OA MAR 2008
 - ii. $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ is an unbiased estimator for σ_i^2 . Set but the
- (d) Let X_1 and X_2 be independent Poisson random variables with mean m. Show that the statistic $T = X_1 - X_2$ is not sufficient.

Male the t-westery and efficient configure for a volt-durate