EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCES - 2003/2004

SECOND SEMESTER

(JUNE/JULY 2005)

PH 104 AC THEORY

Time: 01 hour.
Answer ALL Questions

1. A resistor with resistance R and a capacitor with Capacitance C are connected in series across an AC voltage of frequency f.
(i) Draw voltage-current phasor diagrams for this circuit.
(ii) Determine the impedence and phase angle of this circuit.
(iii) Briefly describe the functions of low pass and high pass filters

A capacitor having capacitance $C=0.1 \mu F$ and a resistor having resistance $R=100 \Omega$ are connected in series across a $50 \mathrm{~Hz}, 20 \mathrm{~V}$ supply. Calculate
(i) Capacitive reactance.
(ii) Impedance of the circuit.
(iii) Current in the circuit.
(iv) the voltage across the capacitor.
(v) the phase angle.
2. A series $L C R$ circuit has $L=0.2 H, C=0.5 \mu F$ and $R=500 \Omega$. The circuit is connected to 25 V AC power supply. When the circuit is at resonance determine the following.
(i) The resonant frequency
(ii) The inductive reactance, capacitive reactance and the impedence of the circuit.
(iii) The current in the circuit.
(iv) The potential differences across each circuit element.
(v) The Q - factor of the circuit.

If capacitor C is connected in parallel to L, R which are in series determine the complex impednce of the circuit.

