EASTERN UNIVERSITY, SRILANKA

5 007 2005

East

FIRST EXAMINATION IN SCIENCE 2003/2004

SECOND SEMESTER

(June/July, 2005)

ST-102- DESCRIPTIVE STATISTICS

Answer all questions

Time: One hour

- (i) Derive the equation that is used to calculate the median value of a continuous frequency distribution
- (ii) The following table gives the distribution of marks secured by the students in an examination.

Marks	Number of students		
Below 20	20		
20-30	40		
30-50	78		
50-60	77		
60-70	67		
Above 70	10		

- 1. Draw an Ogive graph for the above data and read the median value from the graph. Check your result by actual calculations.
- 2. Find the mode value of the distribution.
- 3. Compute the marks limits within which there are middle 50% of the students.
- If 60% of the students passed this test, find the minimum marks obtained by a student who passed the examination.

(b) Let R be the range and σ is the standard deviation of a set of observations x_1, x_2, \dots, x_n . Prove that $R \ge \sigma$.

Hint: $x_i - \mu \le R$; i = 1, 2, ... n.

(c) First semester examination marks for four subjects of a student and the credit points for each subject are given below. Find a suitable average marks earned by the student?

Subject	Marks	Credit points		
BDS 102	84%	2		
BDS 103	96%	3		
BDS 104	72%	2		
BDS 105	88%	2		

(d) Prove that for any frequency distribution the total percentage of cases falling in the interval,

$$\frac{1}{2}(Q_1+Q_3)\pm\frac{1}{2}(Q_3-Q_1)$$
 is 50%.

(a) What is an *Index number*?

2.

- (b) Show that *Fisher's ideal index number* satisfies both time reversal test and factor retest.
- (c) Prove that Fisher's ideal index number lies between Laspeyre's and Paasche's inden numbers.
- (d) Compute price index numbers from the following data using:
 - (i) Laspeyre's method,
 - (ii) Paasche's method,
 - (iii) Fisher's method.

Commodity	Base year		Current year	
	Quantity	Price	Quantity	Price
A	12	10	15	12
В	15	7	20	5
С	24	5	20	9
D	5	16	5	14