EASTERN UNIVERSITY, SRI LANKA
 FIRST EXAMINATION IN SCIENCE 2005/06 (AUG-SEP. 2007)

FIRST SEMESTER

PH 101 - MECHANICS I

Time: 01 hour.
Answer ALL Questions.

1. (a) Define "average velocity" and "instantaneous velocity" and give mathematical expression for both.
A particle located at position $x=0$ at time $t=0$, starts moving along the positive
x-direction with a velocity v that varies as $v=k x^{\frac{1}{2}}$. How do the displacement, velocity and acceleration of the particle vary with time t. What is the average velocity of the particle over the first d distance of its path?
(b) A particle is moving in two dimensions and its position is given by the polar coordinates (r, θ). Show that the velocity \vec{v} and the acceleration \vec{a} of the particle are given by,

$$
\begin{aligned}
& \vec{v}=\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta} \\
& \vec{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \vec{e}_{g} .
\end{aligned}
$$

Where, \vec{e}_{r} and \vec{e}_{θ} are the unit vectors along and perpendicular to the radial direction respectively.
A particle moves in two dimensions $r=2 \theta$, where θ varies with time t as $\theta=t^{2}$. Show that the acceleration of the particle is $\vec{a}=4\left(1-2 t^{4}\right) \vec{e}_{r}+20 t^{2} \vec{e}_{\theta}$.
2. Explain briefly what you mean by kinetic energy, power and work done by a force. State "work-energy theorem".

A force $F(t)$ is acting on a particle moving with velocity $v(t)$. Show that the work done W by the force between the time interval t_{1} and t_{2} is,

$$
W=\int_{t_{1}}^{t_{2}}(\vec{F} \cdot \vec{v}) d t .
$$

A force given by $\vec{F}=(4 \vec{i}+8 \vec{j}+12 t \vec{k})$, acts on a particle of mass 2 kg , where the force is in Newton and t is in sec. Assuming that when $t=0$ the position vector and the velocity of the particle are zero, find
i. the velocity and the position vector of the particle when $t=1 \mathrm{sec}$;
ii. the work done by the force in the time interval $t=0 \mathrm{sec}$ and $t=1 \mathrm{sec}$;
iii. the power of the force at any time t sec.
iv. Calculate the kinetic energy of the particle when $t=1 \mathrm{sec}$ and verify the "Work-Energy" theorem.

