EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE - 2001/2002

(APRIL 2002)

PH 302 THERMODYNAMICS

Time: 01 hour.

Answer \underline{ALL} Questions

1. Define the heat capacity at constant volume and show that

$$C_v = \left(\frac{\partial U}{\partial T}\right)_v$$

The symbols have their usual meanings.

The internal combustion petrol engine can be modelled on the otto cycle. The four stages consist of

- (a) an adiabatic compression from (P_3, V_1) to (P_1, V_2)
- (b) an isochoric pressure increase from P_1 to P_2 .
- (c) an adiabatic expansion from (P_2, V_2) to (P_4, V_1)
- (d) an isochoric pressure decrease from P_4 to P_3 .

Sketch the PV diagram for the above cyclic process. Assuming that the gas behaves ideally with the constant heat capacity find the heat input during the process b and heat output during the process d and hence show that the efficiency of the cycle is

$$\gamma = 1 - \frac{1}{r^{\gamma - 1}}$$

where the compression ratio $r = \frac{V_1}{V_2}$

2. A gas has the equation of state

$$P(V-b) = RT$$

- (i) Write down Maxwell's relations and use them to show that the internal energy U is a function of only T by finding $\left(\frac{\partial U}{\partial v}\right)_T$ and $\left(\frac{\partial U}{\partial P}\right)_T$.
- (ii) Show that for an adiabatic expansion

$$P(V-b)^{\gamma} = constant$$

where $\gamma = \frac{C_p}{C_v}$ and $C_p - C_v = R$. The symbols have their usual meanings.