EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE (2008/2009) SECOND SEMESTER (January, 2012)

MT 301 - GROUP THEORY

(Special Repeat)

Answer all questions

Time: Three hours

BRARI

22 APR 2012

1100000000

- 1. (a) Define the following terms:
 - i. group;
 - ii. cyclic group;
 - iii. abelian group.

Let G be the set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $a, b, c, d \in \mathbb{R}$ with non-zero determinant. Show that (G, .)is a group, where "." denotes usual matrix multiplication. Is this an abelian group? Justify your answer.

- (b) i. State and prove the Lagrange's theorem.
 - ii. Prove that in a finite group G, the order of each element divides the order of G.
 Hence prove that x^{|G|} = e, ∀ x ∈ G, where e is the identity element of G.

2. (a) What is meant by saying that a subgroup of a group is normal?

i. Let H and K be two normal subgroups of a group G. Prove that $H \cap K$ is a normal subgroup of G.

1

- ii. Prove that every subgroup of an abelian group G is a normal subgroup of G.
- (b) With usual notations prove that:
 - i. $N(H) \leq G;$
 - ii. $H \leq N(H)$.

(c) Let $Z(G) = \{x \in G \mid xg = gx, \forall g \in G\}$. Prove the following:

- i. $Z(G) = \bigcap_{a \in G} C(a)$, where $C(a) = \{g \in G : ga = ag\}$ ii. $Z(G) \trianglelefteq G$.
- 3. (a) What is meant by an index of a subgroup of a group. Let H and K be two subgroups of a finite group G and K ⊆ H. Prove that [G: K] = [G: H][H: K].
 - (b) State the first isomorphism theorem.

Let H and K be two normal subgroups of a group G such that $K \subseteq H$. Prove the following:

- i. $K \trianglelefteq H$;
- ii. $H/K \leq G/K$; iii. $\frac{G/K}{H/K} \approx G/H$.
- 4. (a) Define commutator subgroup G' of a group G.

Prove the following:

i. if $H \trianglelefteq G$ then G/H is abelian if and only if $G' \subseteq H$.

ii. let G be the group of all real 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, where $ad \neq 0$ under matrix multiplication. Show

that G' is the set of all matrices of the form $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$.

- (b) What is meant by "Inn G (inner automorphism)" of a group G?
 If H is a subgroup of G, with the usual notations prove that N(H)/Z(H) ≈ Inn G. Hence deduce that G/Z(G) ≈ Inn G.
- (a) Write down the class equation of a finite group G. Hence or otherwise, prove that the center of G is non-trivial if the order of G is pⁿ, where p is a prime number and n ∈ N.
 - (b) Define the term p- group. Let G be a finite abelian group and p be a prime number which divides the order of G. Prove that G has an element of order p.
- 6. (a) Define the following terms as applied to a group:
 - i. permutation;
 - ii. cycle of order r;
 - iii. transposition.
 - (b) Prove that the permutation group on n symbols (S_n) is a finite group of order n!.

Is S_n an abelian group for n > 2? Justify your answer.

(c) Prove that the set of even permutations forms a normal subgroup of S_n . Hence prove that S_n/A_n is a cyclic group of order 2.

