EASTERN UNIVERSITY, SRI LANKA

 DEPARTMENT OF MATHEMATICS

 DEPARTMENT OF MATHEMATICS
 THIRD EXAMINATION IN SCIENCE - 2008/2009
 SECOND SEMESTER (JANUARY, 2012)
 MT 310 - FLUID MECHANICS
 (SPECIAL REPEAT)

Answer all Questions
Time: Two hours

Q1. (a) Suppose that the velocity of a flow field for an incompressible fluid is

$$
\underline{q}=2 x \underline{i}-y \underline{j}-z \underline{k} .
$$

Find the streamlines passing through the point $(1,1,1)$.
(b) Find the possible velocity components so that the surface

$$
\left(\frac{x^{2}}{a^{2}}\right) \cot ^{2} t+\left(\frac{y^{2}}{b^{2}}\right) \sec ^{2} t=1
$$

to be a boundary surface for an incompressible fluid.
(c) If the velocity distribution of a fluid is

$$
\underline{q}=\left(\frac{-y}{x^{2}+y^{2}}\right) \underline{i}+\left(\frac{x}{x^{2}+y^{2}}\right) \underline{j}
$$

find the circulation around a square of corners $(1,0),(2,0),(2,1)$ and $(1,1)$.
(d) If a stream function for a two-dimensional flow of a fluid is

$$
\psi=5 x-3 y+7 x y
$$

then find the velocity potential.

Q2. (a) Briefly describe the continuum hypothesis.
(b) Assume that a fluid body occupies the interior of a closed surface at tin With the usual notation, show that the rate of change of momentum is g by

$$
\int_{V} \rho \frac{D \underline{u}}{D t} d V
$$

(c) State and prove the momentum equation for the motion of an inviscid f Hence by considering the gravitational field, deduce the result

$$
(\underline{u} \cdot \underline{\nabla}) H=0
$$

where $H=\frac{P}{\rho}+\frac{1}{2} \underline{u}^{2}+\chi$ and χ is a scalar potential, for a steady flow.
Q3. (a) Let a three dimensional doublet of strength μ be situated at the origin Show that the velocity potential ϕ at a point $P(r, \theta, \psi)$, in spherical p coordinates, due to the doublet can be written in the form of $\phi=\mu r^{-2}$ co
(b) Let three dimensional doublets of strength μ_{1} and μ_{2} be situated at A_{1} A_{2}, respectively. Further, doublets are positioned at $\left(0,0, c_{1}\right)$ and $\left(0,0, c_{2}\right)$. their axes being directed towards and away from the origin respectively. S that the condition for the absence of transport of fluid across the surfac sphere: $x^{2}+y^{2}+z^{2}=c_{1} c_{2}$ is

$$
\frac{\mu_{2}}{\mu_{1}}=\left(\frac{c_{2}}{c_{1}}\right)^{\frac{3}{2}}
$$

Q4. (a) Suppose that a solid boundary Γ of a large spherical surface contains flui motion and encloses closed rigid surfaces $S_{m}, m=1, \ldots, k$. If fluid is at at infinity, prove that the kinetic energy of the moving fluid is given by

$$
T=\frac{1}{2} \rho \int_{V} \mathrm{q}^{2} d V=\frac{1}{2} \rho \sum_{m=1}^{k} \int_{S_{\mathrm{m}}} \phi \frac{\partial \phi}{\partial \mathbf{n}} d S
$$

where the normal n at each surface element $d S$ being drawn outwards fi the fluid surface and the notations given above are in usual meaning.
(b) A solid sphere of radius a with center O is moving with uniform velocity in an incompressible fluid of infinite extent, which is at rest at infinity, wh \underline{i} is the unit vector along the axis of symmetry $O x$. Suppose that a velo potential at $P(r, \theta, \psi), r \geq a$, is in the form of

$$
\phi(r, \theta)=A r^{-2} \cos \theta
$$

which satisfies the axially symmetric form of Laplace's equation in spherical polar coordinates, show that

$$
A=\frac{1}{2} U a^{3}
$$

Hence prove that the total kinetic energy of the sphere and fluid is given by

$$
\frac{1}{2}\left(M+\frac{1}{2} M^{\prime}\right) U^{2}
$$

where M and M^{\prime} are the masses of the sphere and fluid displaced, respectively. Furthermore, obtain the equation of streamlines.

