

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE FIRST SEMESTER- 2003/2004 (Repeat) CH 301 CHEMISTRY OF NATURAL PRODUCTS

Answer all questions

Time:01 Hour

(1) Answer all three parts (a), (b) and (c).

(a). Draw the Fischer projection of fructose, glucose and galactose sugars having the D-configuration.

A non reducing trisaccharide \underline{P} on complete hydrolysis gives D-fructose, D- glucose and D-galactose as the products. Hydrolysis of \underline{P} with a β - fructosidase gives a reducing disaccharide \underline{Q} and D-fructose. Treatment of \underline{P} with an α - glycosidase gives a non-reducing disaccharide \underline{E} and D-galactose. Complete methylation of \underline{P} followed by hydrolysis with dilute acid gives 2,3,4,6-tetra-O- methyl galactose, 2,3,4 - tri-O- methyl glucose and 1,3,4,6- tetra -O-methyl fructose as products. The disaccharide \underline{Q} when treated with methanol in the presence of HCl gives a compound \underline{F} . Deduce the structures of the compounds \underline{P} , \underline{Q} , \underline{E} and \underline{F} , explaining all the above observations.

D-galactose

(b) (i).Treatment of D-glucose with methanol in the presence of gaseous hydrogen chloride yields mixture of α - and β - methyl glycosides in which the α - anomer predominates. Explain.

(ii). Complete the following reactions of D-ribose with each of the following reagents by supplying a Fischer projection for each organic product formed (mechanism are not required).

- a. HNO3
- b. Excess phNHNH₂

(c). Show, by means of equations, how two of the following conversions may be effected. Give essential experimental conditions only.

(2). Answer all parts (a), (b), and (c)

(a). Draw the Fischer projection formulae of Ribose, Arabinose sugars having the D configuration.

A D(+)- aldopentose A (C5H10O5) on treatment with sodium borohydride (NaBH4) give an optically active compound $\underline{\mathbf{B}}(C_5H_{12}O_5)$. Treatment of $\underline{\mathbf{A}}$ with bromine water gives ($(C_5H_{10}O_6)$, which when heated with concentrated ammonia gives $\underline{\mathbf{D}}(C_5H_{11}NO_5)$ Treatment of **D** with bromine in sodium hydroxide gives **E** (C₄H₈O₄), which reacts with sodium borohydride giving an optically inactive compound $\underline{\mathbf{F}}$ (C₄H₁₀O₄).

Deduce the structures of the compounds A, B, C, D, E and F. By means of equation Show how the compound $\underline{\mathbf{A}}$ could be converted to D (+)-fructose.

(b). (i). Give three names and draw the structures of reducing disaccharides and indicate the types of linkage in them.

(ii). Explain why D-glucose and D-fructose are classified as reducing sugars. Draw and explain the structure of a non-reducing sugar.

(c). By means of equations show how <u>two</u> of the following conversions may be effected. Give essential experimental conditions only.

(II). CHO
$$CH_2OH$$
 $C=O$ CH_2OH CH_2OH CH_2OH CH_2OH

6666666