EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE 2003/2004

LIBRA

FIRST SEMESTER

Oct/Nov 2004

MT 306 - PROBABILITY THEORY

Answer all questions

Time : Two hours

1. Let Y_1 and Y_2 have a joint density function given by $f(y_1, y_2) = \begin{cases} 3y_1 & ; \ 0 \le y_2 \le y_1 \le 1, \\ 0 & ; \ \text{elsewhere.} \end{cases}$

- (a) Find the marginal density functions of Y_1 and Y_2 .
- (b) Find the conditional density function of Y_1 given $Y_2 = y_2$.
- (c) Find $P(Y_1 \le 3/4 | Y_2 \le 1/2)$.
- (d) Let $X = Y_1 Y_2$, Find E(X) and V(X).

2. (a) Define the probability function.

- i. Show that probability of exactly one of the events A or B occurs is $P(A) + P(B) 2P(A \cap B)$.
- ii. Prove that $P(\bigcap_{i=1}^{n} A_i) \ge \sum_{i=1}^{n} P(A_i) - (n-1)$ where $A_i (i = 1, 2, \dots, n)$ are events defined on the sample space.

- (b) Define the Moment generating function.
 - i. Show that if X and Y are independent random variables with moment generating functions $M_X(t)$ and $M_Y(t)$ respectively, then the moment generating function of X + Y is $M_{X+Y}(t) = M_X(t)M_Y(t)$.
 - ii. The probability density function of a Gamma distribution with parameters m and λ is given by

$$f_X(x) = \begin{cases} \frac{\lambda^m x^{m-1} e^{-\lambda x}}{\Gamma(m)} & \text{if } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Find the moment generating function of X. Suppose that the random variable Y which is independent of X has a Gamma distribution with parameters s and λ . Show that X + Y has a Gamma distribution with parameters s + m and λ .

- (a) If X is a random variable having a binomial distribution with the pa-3. rameters n and θ , then show that the moment generating function of $Z = \frac{X - n\theta}{\sqrt{n\theta(1 - \theta)}}$ approaches that of the standard normal distribution when $n \longrightarrow \infty$
 - (b) Suppose that the random variable X is uniformly distributed on (0,1). Assume that the conditional distributional Y/X = x has a binomial distribution with parameters n and p = x. That is, $P(Y = y/X = x) = \binom{n}{y} x^y (1-x)^{n-y}$; $y = 0, 1, \dots, n$.

Find

- i. E(Y).
- ii. Find the distribution of Y.

4. (a) Let X_1, X_2, \dots, X_n be a random sample of size n from a distribution with probability density function,

$$f(x) = \begin{cases} \frac{1}{\theta} exp(\frac{-x}{\theta}) & ; & 0 < x < \infty, \\ 0 & & \text{otherwise.} \end{cases}$$

where $\theta > 0$ is an unknown parameter.

- i. Find $\hat{\theta}$, the method of moments estimator of θ .
- ii. Verify that $\hat{\theta}$ is an unbiased estimator of θ and find its variance. State with reasons whether $\hat{\theta}$ is consistent for θ .
- iii. Find the Cramer-Rao lower bound for the variance of unbiased estimators of θ and deduce the efficiency.
- (b) The shopping times were recorded for n=64 randomly selected customers for a local supermarket. The average and variance of the 64 shopping times were 33 minutes and 256, respectively. Find the 90% confidence interval for the true average shopping time per customer.