EASTERN UNIVERSITY, SRI LANKA
 THIRD EXAMINATION IN SCIENCE 2003/2004
 FIRST SEMESTER

Oct/Nov 2004

MT 306 - PROBABILITY THEORY

Answer all questions

Time : Two hours

1. Let Y_{1} and Y_{2} have a joint density function given by
$f\left(y_{1}, y_{2}\right)= \begin{cases}3 y_{1} & ; 0 \leq y_{2} \leq y_{1} \leq 1, \\ 0 & ; \text { elsewhere } .\end{cases}$
(a) Find the marginal density functions of Y_{1} and Y_{2}.
(b) Find the conditional density function of Y_{1} given $Y_{2}=y_{2}$.
(c) Find $P\left(Y_{1} \leq 3 / 4 \mid Y_{2} \leq 1 / 2\right)$.
(d) Let $X=Y_{1}-Y_{2}$, Find $E(X)$ and $V(X)$.
2. (a) Define the probability function.
i. Show that probability of exactly one of the events A or B occurs is

$$
P(A)+P(B)-2 P(A \cap B) .
$$

ii. Prove that
$P\left(\bigcap_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} P\left(A_{i}\right)-(n-1)$
where $A_{i}(i=1,2, \cdots, n)$ are events defined on the sample space.
(b) Define the Moment generating function.
i. Show that if X and Y are independent random variables with moment generating functions $M_{X}(t)$ and $M_{Y}(t)$ respectively, then the moment generating function of $X+Y$ is $M_{X+Y}(t)=M_{X}(t) M_{Y}(t)$.
ii. The probability density function of a Gamma distribution with parameters m and λ is given by

$$
f_{X}(x)= \begin{cases}\frac{\lambda^{m} x^{m-1} e^{-\lambda x}}{\Gamma(m)} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the moment generating function of X. Suppose that the random variable Y which is independent of X has a Gamma distribution with parameters s and λ. Show that $X+Y$ has a Gamma distribution with parameters $s+m$ and λ.
3. (a) If X is a random variable having a binomial distribution with the parameters n and θ, then show that the moment generating function of $Z=\frac{X-n \theta}{\sqrt{n \theta(1-\theta)}}$ approaches that of the standard normal distribution when $n \longrightarrow \infty$.
(b) Suppose that the random variable X is uniformly distributed on $(0,1)$. Assume that the conditional distributional $Y / X=x$ has a binomial distribution with parameters n and $p=x$.
That is, $P(Y=y / X=x)=\binom{n}{y} x^{y}(1-x)^{n-y} ; y=0,1, \cdots, n$. Find
i. $\mathrm{E}(\mathrm{Y})$.
ii. Find the distribution of Y.
4. (a) Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample of size n from a distribution with probability density function,

$$
f(x)= \begin{cases}\frac{1}{\theta} \exp \left(\frac{-x}{\theta}\right) ; & 0<x<\infty \\ 0 & \text { otherwise }\end{cases}
$$

where $\theta>0$ is an unknown parameter.
i. Find $\hat{\theta}$, the method of moments estimator of θ.
ii. Verify that $\hat{\theta}$ is an unbiased estimator of θ and find its variance. State with reasons whether $\hat{\theta}$ is consistent for θ.
iii. Find the Cramer-Rao lower bound for the variance of unbiased estimators of θ and deduce the efficiency.
(b) The shopping times were recorded for $\mathrm{n}=64$ randomly selected customers for a local supermarket. The average and variance of the 64 shopping times were 33 minutes and 256, respectively. Find the 90% confidence interval for the true average shopping time per customer.

