EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2004/2005 FIRST SEMESTER (Jan./ Feb., 2006)

MT 203-EIGEN SPACE AND QUADRATIC FORMS

Answer all questions
Time allowed: Two hours

1. Define

- Geometric multiplicity,
- Algebraic multiplicity;
of an eigenvalues λ of a linear transformation on a finite dimensional vector space V.
(a) Let A be an $n \times n$ non-singular matrix and let $\chi_{A}(t)$ denote the characteristic polynomiâl of A.
Show that

$$
\chi_{A^{-1}}(t)=\frac{(-t)^{n}}{\operatorname{det} A} \chi_{A}(1 / t) ; \quad(t \neq 0)
$$

Deduce that if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A with algebraic multiplicities then $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \ldots, \frac{1}{\lambda_{n}}$ are the eigenvalues of A^{-1} with algebraic multiplicities.
(b) Let A be a matrix of order n such that $A^{2}=I$. Show that every eigenvalue of A is 1 or -1 .

Let $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ -4 & -4 & -1 \\ 4 & 1 & -2\end{array}\right)$. Find a non-singular matrix P such that $P^{-1} A P$ is diagonal.
2. Define the term " minimum polynomial " of a square matrix.
(a) Prove that the characteristic polynomial of an $n \times n$ matrix A always divides the $n^{\text {th }}$ power of its minimum polynomial.
(b) Let $B=\left(\begin{array}{cc}B_{11} & 0 \\ 0 & B_{22}\end{array}\right)$ be a block diagonal matrix, where B_{11} and B_{22} are square matrices. Show that the minimum polynomial $m(t)$ of B is the least common multiple of the minimum polynomials $g(t)$ and $h(t)$ of B_{11} and B_{22} respectively.
(c) State the Cayley-Hamilton theorem

Find the minimum polynomial of the matrix A given by

$$
A=\left(\begin{array}{lllllll}
2 & 8 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 5
\end{array}\right)
$$

3. (a) Find an orthogonal transformation which reduces the following quadratic form to a diagonal form

$$
3 x_{1}^{2}+2 x_{2}^{2}+4 x_{3}^{2}-4 x_{1} x_{2}+4 x_{1} x 3
$$

(b) Simultaneously diagonalize the following pair of quadratic forms;

$$
\begin{aligned}
& x_{1}^{2}-x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}-2 x_{1} x_{3} \\
& 3 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}-2 x_{2} x_{3}-2 x_{1} x_{3}
\end{aligned}
$$

4. What is meant by an "inner product" on a vector space?
(a) Verify that the function $<.,>$, define by

$$
<x, y>=\sum_{i=1}^{n} x_{i} \overline{y_{i}}, \quad x, y \in \mathbb{C}^{n}
$$

is an inner product on \mathbb{C}^{n}.
(b) State Gram-Schmidt Process and use it to find the othonormal set for span of S in \mathbb{R}^{4}, where $S=\left\{(1,0,-1,0)^{\top},(0,1,2,1)^{\top},(2,1,-1,0)^{\top}\right\}$.
(c) Let V be an inner product space and W be a subspace of V.
i. Show that there is an orthonormal basis of W which is part of an orthonormal basis of V.
ii. Prove that, $V=W \oplus W^{\perp}$, where W^{\perp} is orthogonal complement of W and \oplus denotes the direct sum.

