EASTERN UNIVERSITY, SRI LANKA
THIRD YEAR IN SCIENCE
SECOND SEMESTER 2002/2003 (2004)
CH 306 SURFACE CHEMISTRY \& MOLECULAR SPECTROSCOPY

Answer All Questions
Time: 1hour
(h $-6.626 \times 10^{-34} \mathrm{JS}, \mathrm{R}-8.315 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{C}-3.0 \times 10^{8} \mathrm{mS}^{-1}, ~ N-6.023 \times 10^{23} \mathrm{~mol}^{-1}$)

1. (a) Show that the surface area of an adsorbent is given by the following equation.

Surface area $=\mathrm{V}_{\mathrm{m}} \mathrm{N} / 22.4\left(\mathrm{~V}_{\text {liq }} / \mathrm{N}\right)^{2 / 3}$ Where V_{m} is the volume of the liquid adsorbate required to form mono layer, $\mathrm{V}_{\text {liq }}$ is the volume of one mole of liquid adsorbate and N is the Avogadro number.
(b) Consider the following first-order surface reaction:

$$
\mathrm{A}_{(\mathrm{g})} \Rightarrow \mathrm{A}_{(\mathrm{ads})} \rightarrow \mathrm{B}_{(\mathrm{g})}
$$

This reaction has a rate of $1.8 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~S}^{-1}$. The surface has a dimension of 1.0 cm by 3.5 cm . Calculate the rate of reaction if the dimensions of the two sides of the surface were each doubled. (Assume that $\mathrm{A}_{(\mathrm{g})}$ is in excess)
2. (a) If two masses m_{1} and m_{2} are joined by a rigid bar of length r_{0}, show that the moment of inertia $(\mathrm{I})=\mu \mathrm{r}_{0}{ }^{2}$ where μ is the reduced mass.
(b) Given that $\mathrm{r}_{0}=156 \mathrm{pm}$ and force constant $(\mathrm{K})=250$ for ${ }^{6} \mathrm{Li}{ }^{19} \mathrm{~F}$, use the rigid rotatorharmonic oscillator approximation to construct an approximate energy level diagram for the first five rotational levels in the $v=0$ to $v=1$ vibrational states.

