EASTERN UNIVERSITY, SRI LANKA
 THIRD EXAMINATION IN SCIENCE 2002/03 \& 2002/03
 SECOND SEMESTER (April/May, 2004)

CS 302 - Computer Networks

Time allowed: Two hours

Q1

(a) State clearly the reasons for using layered protocols.
\{20\}
(b) Explain how a packet originating from the presentation layer of the sending host travels through the layers to the receiving host's presentation layer.
\{25\}
(c) Describe the principal difference between connectionless communication and connection-oriented communication.
(d) Describe each of the following switching techniques:
a. Circuit switching
b. Packet switching

Q2
(a) Describe:
(i) Character oriented transmission with character stuffing.
(ii) Bit oriented transmission with bit stuffing.
(b) Describe the parity bit error detection method for blocks of characters.

Illustrate your answer for the following block

B_{6}	$\mathrm{~B}_{5}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$
0	1	0	1	0	0	0
1	0	0	0	1	1	0
0	1	0	0	0	0	0
0	1	0	1	1	0	1
1	0	0	0	0	0	0
1	1	0	0	0	1	1

(c) Describe the principle of operation of a CRC error detection method. By means of an example, show how:
$\{40\}$
(i) the error detection bits are generated
(ii) the received frame is checked for transmission error use the generator polynomial $\mathrm{x}^{4}+\mathrm{x}^{3}+1$
(a) Consider a simple protocol for transferring files over a link. After an initial negotiation, \mathbf{A} sends data packets of size 1 KB to $\mathbf{B} ; \mathbf{B}$ then replies with an acknowledgement. A always waits for each ACK before sending the next data packet; this is known as stop-and-wait. Packets that are overdue are presumed lost and are retransmitted.
(i). In the absence of any packet loses or duplication, explain why it is not necessary to include any sequence number data in the packet headers.
(ii). Suppose that the link can lose occasional packets, but that packets that do arrive always arrive in the order sent. Is a 2 -bit sequence number enough for \mathbf{A} and \mathbf{B} to detect and resend any lost packets? Is a 1-bit sequence number enough?
(iii). Now suppose that the link can deliver out of order, and that sometimes a packet can be delivered as much as 1 minute after subsequent packets. How does this change the sequence number requirements?
(b) Two neighbouring nodes $(\mathbf{A}$ and $\mathbf{B})$ use a sliding-window protocol with a 3-bit sequence number. As the ARQ mechanism, Go-back-N is used with a window size of 4. Assuming \mathbf{A} is transmitting and \mathbf{B} is receiving, show the window positions for the following succession of events:
(i). Before \mathbf{A} sends any frames.
(ii). After \mathbf{A} sends frames $0,1,2$ and \mathbf{B} acknowledges 0,1 and the ACKs are received by \mathbf{A}.
(iii). After \mathbf{A} sends frames 3, 4 and 5 and B acknowledges 4 and the ACK is received by A.
(a) List the four main types of network topology currently in widespread use for LAN's and, with the aid of sketches, explain their operation.
(b) Describe the principle of operation of the following LAN methods:
(i) CSMA/CD
(ii) Token ring
(c) Briefly describe the Eastern University Campus Wide Area Network setup. $\{20\}$

