

44

EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE (2004/2005) FIRST SEMESTER (Jan./Feb., 2006) ST 201 - STATISTICAL INFERENCE I

Answer all questions

Time allowed: Two hours

- 1. (a) Determine the maximum likelihood estimates of the parameters for the random sample of size n from each population given below:
 - i. Poisson (θ) ;
 - ii. Normal (μ, σ^2) ;
 - iii. Bernoulli with p.
 - (b) A random sample of $X_1, X_2, ..., X_n$ is obtained from the distribution with the probability density function

$$f(x) = \frac{3\alpha^3}{(\alpha + x)^4}; \quad x > 0,$$

reputation that is palioral ou [0, 6]

where $\alpha > 0$ is the unknown parameter. Find $\hat{\alpha}$, by the method of moments.

2. Define the terms "unbiasedness" and "efficiency" in the context of estimation and state the factorization theorem.

Let $X_1, X_2, ..., X_n$ be an independent random sample from an exponential distribution with parameter λ .

(a) i. Find the maximum likelihood estimator for λ .

ii. Find the sufficient statistic for λ .

(b) Let $T_1 = \frac{2}{3}X_0^2$ where $X_0 = \frac{X_1 + X_2}{2}$ and $T_2 = \sum_{i=1}^n \frac{X_i^2}{2n}$

- i. Show that T_1 and T_2 are unbiased estimators of $\frac{1}{\lambda^2}$.
- ii. Use the efficiency method to decide which of the estimator is preferable.
- 3. Independent measurements $X_1, X_2, ..., X_n$ are made of a certain physical constant. The measurements are Normally distributed with mean μ and $Var(X_i) = \sigma_i^2$, where σ_i^2 is known (i = 1, 2, ..., n).
 - (a) Find a minimal sufficient statistic for μ .
 - (b) Find the minimum variance unbiased estimator of μ .
 - (c) Show that the variance of this estimator attains the Cramer-Rao lower bound.
 - (d) Find the efficiency of the estimator X
 [−](∑X_i/n) relative to the minimum variance unbiased estimator.
- 4. The distribution of $X_{(n)}$, the largest of the *n* observations in a random sample from a population that is uniform on $[0, \theta]$.
 - (a) Show that $X_{(n)}$ is a consistent estimate of θ .
 - (b) Determine a multiple of \overline{X} that is unbiased and obtain its mean squared error.
 - (c) Determine a multiple of $X_{(n)}$ that is unbiased and compute its mean squared error.

if Find the maximum litelihood estimator for

4

it. Find the sufficient statistic for

the factorization theorem.

(d) What is your conclusions about these estimators?