EASTERIN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE (2002/2003)

(Feb./Mar.'2004)

MT 301 - GROUP THEORY

REPEAT

Answer Five questions only
Time: Three hours

1. State and prove Lagrange's theorem for a finite group G.
(a) In a group G, H and K are different subgroups of order p, p is prime. Show that $H \cap K=\{e\}$, where e is the identity element of G.
(b) Prove that in a finite group G, the order of each element divides order of G. Hence prove that $x^{|G|}=e, \forall x \in G$.
(c) Let G be a non-abelian group of order 20. Prove that G contains atleast one element of order 5 or 10 .
(d) i. Let G be a group of order 27. Prove that G contains a sub group of order 3.
ii. Suppose that H, K are unequal subgroups of G, each of order 16. Prove that $24 \leq|H \cup K| \leq 31$.
2. (a) What is meant by saying that a subgroup of a group is normal?
i. Let H and K be two normal subgroups of a group G. Prove that $H \cap K$ is a normal subgroup of G [10]
[05]
ii. Prove that every subgroup of an abelian group is a normal subgroup.
(b) With usual notations prove that
i. $N(H) \leq G$;
ii. $H \unlhd N(H)$;
iii. $N(H)$ is the largest subgroup of G in which H is normal.[10]
(c) i. Let H be a subgroup of a group G such that $x^{2} \in H$ for every x in G. Prove that $H \unlhd G$ and G / H is abelian.
ii. Show that a group in which all the $m^{\text {th }}$ powers commute with each other and all the $\dot{n}^{\text {th }}$ powers commute with each other, m and n relatively prime, is abelian.
(Hint:If m, n are relatively prime there exist integers x and y such that $x m+y n=1$.)
3. (a) State and prove the first isomorphism theorem.
(b) Let H and K be two normal subgroups of a group G such that $K \subseteq H$. Prove that
i. $K \unlhd H$;
ii. $H / K \unlhd G / K$;
iii. $\frac{G / K}{H / K} \cong G / H$.
(c) From second isomorphism theorem deduce that $|H K|=\frac{\mid H}{\mid H \cap}$ where $H \leq G, K \unlhd G$.
Hence deduce that, if G is a finite group with a normal subgroup N such that $(|N|,|G / N|)=1$, then N is the unique subgroup of G of order $|N|$.
4. (a) Define the following terms as applied to a group G.
i. commutator of two elements a, b of G;
ii. commutator subgroup $\left(G^{\prime}\right)$;
iii. internal direct product of two subgroups of G.
(b) Prove that

$$
\begin{equation*}
\text { i. } G^{\prime} \unlhd G \text {; } \tag{15}
\end{equation*}
$$

ii. G / G^{\prime} is abelian.
(c) i. Let H and K be two subgroups of a group G, then prove that $G=H \otimes K$ if and only if
A. each $x \in G$ can be uniquely expressed in the form $x=h k$, where $h \in H, k \in K$.
B. $h k=k h$ for any $h \in H, k \in K$.
ii. Give an example to show that a group cannot always be expressed as the internal direct product of two non-trivial normail subgroups.
5. Define the terms " automorphism" and "inner automorphism" of a group G.
Let $\operatorname{Aut} G$ be the set of all automorphisms of G and let $\operatorname{Inn} G$ be the set of all inner automorphisms of G.
(a) Show that
i. Aut G is a group under composition of maps;
ii. $\operatorname{Inn} G$ is a normal subgroup of $\operatorname{Aut} G$.
(b) If H is a subgroup of G, prove that $N(H) / Z(H) \cong \operatorname{InnG}, \quad$ [20]

Hence deduce that $G / Z(G) \cong$ InnG.
Where, $N(H)=\{x \in H \mid x H=H x\}$ and
$Z(H)=\{a \in H \mid a x=x a \forall x \in H\}$.
(c) If $G=\{a, b\}$, find Aut G for each of the binary operations " * "and " x " defined by, i. $a * a=a, a * b=b, b * a=b, b * b=a$;
ii. $a \times a=a, a \times b=b, b \times a=a, b \times b=b$.
6. Define the following terms as applied to a group.

* Permutation;
* Cycle of order r;
* Transposition.
(a) Prove that the permutation group on n symbols $\left(s_{n}\right)$ is a finite group of order $n!$.
Is it true that s_{n} is abelian for $n>2$? Justify your answer.
(b) Prove that every permutation in s_{n} can be expressed à ${ }^{5}$ sif of transpositions.
(c) Prove that the set of even permutations forms a normal subgroup of s_{n}.
(d) Prove with the usual notations that $A_{n}=s_{n}$ implies $n=1$. [20]

7. What is meant by a conjugate class in a group?
Write down the class equation of a finite group G. Hence or otherwise prove that
(a) i. If the order of G is p^{n}, where p is a prime number, then centre of G is non-trivial.
ii. If the order of G is p^{2}, where p is prime number then G is abelian.
(b) If G be a group of order 27, deduce that
i. G has a non-trivial centre $Z(G)$;
ii. If G is non-abelian then order of the centre of G is 3 . [10]
(c) Let G be a group containing an element of finite order $n>1$ and exactly two conjugate classes. Prove that $|G|=2$.

8. Define the term p-group.

(a) Prove that homomorphic image of a p-group is a p-group. [20]
(b) Let G be a finite abelian group and p be a prime number such that p is a divisor of the order of G. Prove that G has an element of order p.
(c) "If G is a finite group, p a prime, and p^{r} the highest power of p dividing the order of G, then there is a subgroup of G of order $p^{r}{ }^{"}$.
Using the above fact or otherwise, prove that a finite group G is a p-group if and only if every element of G has order a power of p.

