EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE (2002/2003)

(Feb./Mar.'2004)

MT 301 - GROUP THEORY

REPEAT

Answer Five questions only

Time: Three hours

Seres in

l Jui

- 1. State and prove Lagrange's theorem for a finite group G. [25]
 - (a) In a group G, H and K are different subgroups of order p, p is prime. Show that H ∩ K = {e}, where e is the identity element of G.
 - (b) Prove that in a finite group G, the order of each element divides order of G. Hence prove that x^{|G|} = e, ∀ x ∈ G. [15]
 - (c) Let G be a non-abelian group of order 20. Prove that G contains atleast one element of order 5 or 10. [15]
 - (d) i. Let G be a group of order 27. Prove that G contains a sub group of order 3.
 - ii. Suppose that H, K are unequal subgroups of G, each of order
 16. Prove that 24 ≤ | H ∪ K |≤ 31. [15]

- 2. (a) What is meant by saying that a subgroup of a group is normal?
 - i. Let H and K be two normal subgroups of a group G. Prove that $H \cap K$ is a normal subgroup of G [10]
 - ii. Prove that every subgroup of an abelian group is a normal subgroup. [10]
 - (b) With usual notations prove that
 - i. $N(H) \le G;$ [15]
 - ii. $H \leq N(H);$ [15]
 - iii. N(H) is the largest subgroup of G in which H is normal.[10]
 - (c) i. Let H be a subgroup of a group G such that $x^2 \in H$ for every x in G. Prove that $H \leq G$ and G/H is abelian. [20]
 - ii. Show that a group in which all the mth powers commute with each other and all the nth powers commute with each other, m and n relatively prime, is abelian. [15]
 (Hint:If m,n are relatively prime there exist integers x and y such that xm + yn = 1.)
 - 3. (a) State and prove the first isomorphism theorem. [25]
 - (b) Let H and K be two normal subgroups of a group G such that $K \subseteq H$. Prove that
 - i. $K \trianglelefteq H$; [05]
 - ii. $H/K \leq G/K$; [20]
 - iii. $\frac{G/K}{H/K} \cong G/H.$ [20]

(c)	From second isomorphism theorem deduce that $ HK = \frac{ H }{ H }$	Berenne	102 .00
()	where $H \leq G, K \leq G$.	[15]	ity, Sri La
	Hence deduce that, if G is a finite group with a normal sub	group	
	N such that $(N , G/N) = 1$, then N is the unique sub	ogroup	
	of G of order $ N $.	[15]	
(a)) Define the following terms as applied to a group G .		

- i. commutator of two elements a, b of G; [10]
 - ii. commutator subgroup (G'); [10]
 - iii. internal direct product of two subgroups of G. [10]

(b) Prove that

4.

- i. $G' \trianglelefteq G;$ [15]
- ii. G/G' is abelian. [10]
- (c) i. Let H and K be two subgroups of a group G, then prove that $G = H \otimes K$ if and only if
 - A. each $x \in G$ can be uniquely expressed in the form

x = hk, where $h \in H, k \in K$.

- B. hk = kh for any $h \in H, k \in K$. [25]
- ii. Give an example to show that a group cannot always be expressed as the internal direct product of two non-trivial normal subgroups.
 [20]

5. Define the terms "automorphism" and "inner automorphism" of a group G. [10]

Let AutG be the set of all automorphisms of G and let InnG be the set of all inner automorphisms of G.

- (a) Show that
 - i. AutG is a group under composition of maps; [20]
 - ii. InnG is a normal subgroup of AutG. [20]
 - (b) If H is a subgroup of G, prove that N(H)/Z(H) ≈ InnG, [20] Hence deduce that G/Z(G) ≈ InnG. [10] Where, N(H) = {x ∈ H | xH = Hx} and Z(H) = {a ∈ H | ax = xa ∀x ∈ H}.
 - (c) If $G = \{a, b\}$, find AutG for each of the binary operations "* "and "×" defined by,

i.
$$a * a = a$$
, $a * b = b$, $b * a = b$, $b * b = a$;
ii. $a \times a = a$, $a \times b = b$, $b \times a = a$, $b \times b = b$. [20]

- 6. Define the following terms as applied to a group.
 - * Permutation;
 - * Cycle of order r;
 - * Transposition. [15]
 - (a) Prove that the permutation group on n symbols (s_n) is a finite group of order n!.
 Is it true that s_n is abelian for n > 2? Justify your answer. [10]

- (b) Prove that every permutation in s_n can be expressed as it produle $e^{n^{K_n}}$ of transpositions. [20]
- (c) Prove that the set of even permutations forms a normal subgroup of s_n. [20]
- (d) Prove with the usual notations that $A_n = s_n$ implies n = 1. [20]
- 7. What is meant by a conjugate class in a group? [10]
 Write down the class equation of a finite group G. [05]
 Hence or otherwise prove that
 - (a) i. If the order of G is pⁿ, where p is a prime number, then centre of G is non-trivial.
 - ii. If the order of G is p^2 , where p is prime number then G is abelian. [20]
 - (b) If G be a group of order 27, deduce that
 - i. G has a non-trivial centre Z(G); [10]
 - ii. If G is non-abelian then order of the centre of G is 3. [10]
 - (c) Let G be a group containing an element of finite order n > 1 and exactly two conjugate classes. Prove that |G| = 2. [20]

- 8. Define the term p-group.
 - (a) Prove that homomorphic image of a p-group is a p-group. [20]
 - (b) Let G be a finite abelian group and p be a prime number such that p is a divisor of the order of G. Prove that G has an element of order p. [40]
 - (c) "If G is a finite group, p a prime, and p^r the highest power of p dividing the order of G, then there is a subgroup of G of order p^r ".

Using the above fact or otherwise, prove that a finite group G is a p-group if and only if every element of G has order a power of p. [30]