Bacan University Still EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE

(2002/2003 & 2002/2003(A))

SECOND SEMESTER(Feb./Mar.'2004)

MT 301 - GROUP THEORY

Answer all questions

Time: Three hours

- 1. State and prove Lagrange's theorem for a finite group G. [25]
 - (a) In a group G, H and K are different subgroups of order p, p is prime. Show that $H \cap K = \{e\}$, where e is the identity element of G. [15]
 - (b) Prove that in a finite group G, the order of each element divides order of G. Hence prove that $x^{|G|} = e, \ \forall \ x \in G$.
 - (c) Let G be a non-abelian group of order 20. Prove that G contains atleast one element of order 5 or 10. [25]
 - (d) Let G be a group of order 27. Prove that G contains a sub group of order 3. [20]

2.	(a)	State and prove the first isomorphism theorem.	[40]
	(b)	Let H and K be two normal subgroups of a group G such	that
		$K \subseteq H$. Prove that	
		i. $K \leq H$; say hardeal/are divided	[10]
		ii. $H/K \leq G/K$;	[20]
		iii. $\frac{G/K}{H/K} \cong G/H$.	[30]
	(a)	Define the following terms as applied to a group G .	
		i. commutator of two elements a, b of G ;	[10]
		ii. commutator subgroup (G') of G ;	[10]
		iii. internal direct product of two subgroups of G .	[10]
	(b)	Prove that	
		i. $G' \subseteq G$;	[15]
		ii. G/G' is abelian.	[10]
	(c)	i. Let H and K be two subgroups of a group G , prove the	ıt
		$G = H \otimes K$ if and only if	
		A. each $x \in G$ can be uniquely expressed in the form	
		$x = hk$, where $h \in H, k \in K$.	
		B. $hk = kh$ for any $h \in H, k \in K$.	[25]
		ii. Give an example to show that a group cannot always b	oe ex-
		pressed as the internal direct product of two non-trivia	l nor-
		mal subgroups.	[20]