EASTERN UNIVERSITY, SRI LANKA

Serom University, THIRD YEAR EXAMINATION IN SCIENCE 2002/2003

SECOND SEMESTER

(April/May '2004)

(Re-Repeat)

MT 302 - COMPLEX ANALYSIS

Answer five questions only

Time: Three hours

- (a) Define what is meant by "a complex-valued function f has a limit 1. at $z_0 \in \mathbb{C}$ ".
 - (b) Show that

$$\sum_{k=0}^{\infty} z^k = \frac{1}{1-z} \quad \text{for } |z| < 1.$$

Deduce that if 0 < r < 1, then

$$\sum_{n=1}^{\infty} r^n \cos n\theta = \frac{r \cos \theta - r^2}{1 - 2r \cos \theta + r^2} ,$$

$$\sum_{n=1}^{\infty} r^n \sin n\theta = \frac{r \sin \theta - r^2}{1 - 2r \cos \theta + r^2}$$

(a) What is meant by saying that a complex-valued function f, de-2. fined on a domain $D \subseteq \mathbb{C}$, is analytic at a point $z_0 \in D$. Show that if z = x + iy and a function f(z) = u(x, y) + iv(x, y) is analytic at $z_0 = x_0 + iy_0$, then the equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

are satisfied at every point of some neighbourhood of z_0 .

(b) Prove that the function $u(x,y) = 3x^2y + 2x^2 - y^3 - 2y^2$ is harmonic.

Find a function v(x, y) such that f(z) = u(x, y) + iv(x, y) is analytic.

3. Let M > 0 be such that $|f(z)| \leq M$ for all z on a contour C and l be the length of C.

Show that

$$\Big|\int_C f(z) \ dz\Big| \le Ml$$
.

Hence show that

$$\left| \int_C \frac{z^{1/2}}{z^2 + 1} \, dz \right| \le \frac{3\sqrt{3}}{8} \pi \; ,$$

where C is the semi circular path given by $z=3e^{i\theta}, \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.

4. Let f be analytic everywhere within and on a simple closed contour C, taken in the positive sense. If z_0 is any point interior to C, then prove that

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$
.

Prove that if f(z) is analytic inside and on the circle C if radius r with centre at $z = z_0$, then

$$\left| f^{(n)}(z_0) \right| \le \frac{Mn!}{r^n} , \quad n = 0, 1, 2, \cdots$$

where M is a positive constant such that $|f(z)| \leq M$ for all z inside and on C.

- 5. Prove or disprove each of the following statements. Justify your answer.
 - (a) If f(z) and $\overline{f(z)}$ are analytic functions in a domain D, then f(z) is a constant in D.
 - (b) The function $f(z) = \frac{1}{z}$ is uniformly continuous in |z| < 1.
 - (c) Every polynomial of degree n with complex coefficients, has exactly n zero.
 - (d) The function $f: \mathbb{C} \longrightarrow \mathbb{C}$ defined by $f(z) = |z|^2$, has derivative at each point in \mathbb{C} .
- 6. (a) Let f be a complex-valued function and $z_0 \in \mathbb{C}$. Explain what is meant by each of the following statements:
 - (i) f has a pole of order m at z_0 ;
 - (ii) residue of f at z_0 .
 - (b) Show that if f is analytic inside and on a simple closed contour C and f has a pole of order m at $z=\alpha$ then the residue of f at $z=\alpha$ is given by

$$\lim_{z \to \alpha} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \Big\{ (z - \alpha)^m \ f(z) \Big\}.$$

- 7. (a) State and prove the Argument Theorem.
 - (b) (i) If f(z) and g(z) are analytic inside and on a simple closed curve C and if |g(z)| < |f(z)| on C, then show that both functions f(z) + g(z) and f(z) have the same number of zeros inside C.
 - (ii) Show that all the roots of $2z^5 z^3 + z + 7 = 0$ lie between the circles |z| = 1 and |z| = 2.

- 8. (a) State the Residue Theorem.
 - (b) Find the value of the integral

$$\oint_C \frac{3z^2 + 2}{(z - 1)(z^2 + 9)} dz$$

where C is taken counter clockwise around the circle

(b) Show that if f is analytic inside and bit a simple deposi-

= lal box d = lal relona, "West Ar for all

- (i) |z-2|=2;
- (ii) |z|=4.