

EASETRN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - REPEAT

SECOND SEMESTER 2004/2005 (OCTOBER 2006)

CH 206 X RAY CRSTALLOGRAPHY, SYMMETRY AND SYMMETRY ELEMENTS AND PHASE RULE

Time allowed: ONE Hour

Candidate must NOT start writing their answers until told to do so

You may find the following data useful

Avogadro constant (N_A): $6.023 \times 10^{23} \text{ mol}^{-1}$ Electron charge (e): $1.602 \times 10^{-19} \text{ C}$ Faraday constant (F): $9.648 \times 10^4 \text{ Cmol}^{-1}$ Gas constant (R): $8.314 \text{ JK}^{-1}\text{mol}^{-1}$ Planck's constant (h): $6.626 \times 10^{-34} \text{ Js}$ Rest mass of electron (m_e): $9.1 \times 10^{-31} \text{ kg}$ Velocity of light (c): $3 \times 10^8 \text{ ms}^{-1}$ The molar mass of Barium is 137.3 gmol^{-1}

The use of a non -programmable calculator is permitted

CH 206 X RAY CRSTALLOGRAPHY, SYMMETRY AND SYMMETRY ELEMENTS AND PHASE RULE 2004/2005

1. a. What are the symmetry elements present in SO₃. Show wherever possible the symmetry elements with the help of diagrams.

(20 marks)

. b. What is the Miller indices for the plane having the intercept of a/2, b/2, α c. Draw a schematic diagram for the above plane in a cube.

(20 marks)

c. The distance between the (211) planes in Barium is 204.9 pm. Given that the Barium forms a body centered cubic lattice, calculate the density of Barium.

(20 marks)

d. A powder diffraction photograph of powdered lead gave Bragg's diffraction at the following angles when 154.43 pm X rays were used in a camera of radius 5.73 cm.

 15.66° , 18.17° , 26.13° , 31.11° and 32.71° Identify the unit cell and its dimension.

(40 marks)

- 2. a. State Gibb's phase rule and identify the terms in it.
 - b. What is the number of components, phases and degrees of freedom in each of the following closed system?

i) $CaCO_3$ (s) \frown CaO (s) + CO₂ (g)

ii) N₂O₄ (g) 2NO₂ (g)

c. What is "Condensed system"? Write the reduced phase rule equation.

(10 marks)

(20 marks)

- d. I) Explain the following
 - i) Congruent melting point
 - ii) Eutectics

(20 marks)

II) Components A and B form two solid compounds A₂B and AB₂. The compound A₂B melts at 800 °C to give a liquid having the same composition as that of A₂B. The compound AB₂ melts and decomposes at 700 °C to give solid B and a liquid containing 60% of B. The melting points of A and B are 500 °C and 1000 °C respectively. Sketch a phase diagram of temperature versus amount of fraction of the system and completely label it.

(40 marks)