

EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE 2002/03 & 2002/03(A)

SECOND SEMESTER

SPECIAL EXAMINATION

(April/May, 2004)

MT308 - STATISTICS

Answer all questions

Time : Two hours

1. (a) Prove that Spearman's rank correlation coefficient is given by

 $6\sum_{i=1}^{k} d_i^2$ $1 - \frac{6\sum_{i=1}^{k} d_i^2}{n(n^2 - 1)}$, where d_i denotes the difference between the ranks of the i^{th} individual and n is the number of observations.

- (b) Find the maximum and minimum value of the Spearman's rank correlation coefficient.
- (c) Ten competitors in a beauty contest are ranked by 3 judges as follows:

Compititor	1	2	3	4	5	6	7	8	9	10
judge A	1	5	4	8	9	6	10	7	3	2
Judge B	4	8	7	6	5	9	10	3	2	1
Judge C	6	7	8	1	5	10	9	2	3	4

Discuss which pair of judges has the nearest approach to common tastes of beauty.

· ... 44

 (a) The following table gives the distribution of marks secured by some students in an examination.

Marks	Number of students					
Below 20	20					
20 - 30	40					
30 - 50	78					
50 - 60	77					
60 - 70	67					
Above 70	up lis 10 mA					

- i. Derive the equation that is used to calculate the median of a continuous frequency distribution.
- ii. Draw an Ogive graph and read the median from the graph. Check your result by actual calculations.
- iii. Find the mode of the distribution.
- iv. Find the inter quartile range.
- v. If 60 percentage of the students pass this test, find the minimum marks obtained by a pass student.
- (b) An examination was held to decide about the award of scholarship in a University. The weights of various subjects were different. The marks obtained by two candidates A and B out of 100 on each subject are given below:

2

Eastern University

Subject Weight A's Marks B's Marks Statistics 4 85 80 Accountancy 3 75 75Economics 2 45 60 Mercantile law 1 65 90

If the candidate getting highest marks is to be awarded the scholarship, who should get it?

3. The following are the scores which 12 students obtained in the mid-term and the final examination in statistics.

Mid - term	71	49	80	73	93	85	58	82	64	32	87	80
Final exam	83	62	76	77	89	74	48	78	76	51	73	89

1.1.1.1

- (a) Using the least-squares criterion, derive equations that are used to estimate slope and intercept of a simple linear regression line.
- (b) Find the equation of the least-squares regression line which will enable us to predict a student's final examination score in this course on the basis of his or her score in the mid-term examination.
- (c) A student says that there is no relationship between between the mid-term and final exam scores. Test this claim at 5% level.
- (d) Predict the final exam score of a student who received 84 marks in the mid-term examination.

- (e) set up 95 percentage confidence intervals for your regression estimates.
- 4. (a) Let R be the range and σ is the standard deviation of a set of observations. Prove that $R \geq \sigma$.
 - (b) During 10 weeks of a session the marks scored by two candidates Jeyanth and Vasanth, taking statistics course are given below:

Week	1	2	3	4	5	6	7	8	9	10
Jeyanth	58	59	60	54	65	66	52	75	69	52
Vasanth	87	89	78	71	73	84	65	66	56	46

- i. Who is the better scorer?
- ii. Who is more consistent student?
- (c) If n₁, n₂ are the sizes; x

 ₁, x

 ₂ the means and σ₁, σ₂ the standard deviation σ of the standard deviations of two series. Then the standard deviation σ of the combined series of size n₁ + n₂ is given by

 σ² = 1/(n₁ + n₂) [n₁(σ₁² + d₁²) + n₂(σ₂² + d₂²)].
 where d_i = x

 _i x

 ; i = 1,2, and x is the combined mean.
 Suggest a suitable equation for the combined standard deviation when there are k number of series.
- (d) Prove that the algebraic sum of the deviations of a set of values from their arithmetic mean is zero.

4