

EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2004/2005 SECOND SEMESTER (Oct./ Nov., 2006) MT 204 - RIEMANN INTEGRAL & SEQUENCE AND SERIES OF FUNCTIONS

Proper & Repeat

Answer all questions

Time : Two hours

- 1. Let f be a bounded real valued function on [a, b]. Explain what is meant by the statement that "f is Riemann integrable over [a, b]".
 - (a) With usual notations, prove that a bounded real valued function f on [a, b] is Riemann integrable if and only if for given $\epsilon > 0$, there exists a partition P of [a, b] such that

$$U(P,f) - L(P,f) < \epsilon.$$

(b) With usual notations, prove that a bounded function f on [a, b] is Riemann integrable if and only if for each ε > 0 there is a δ > 0 depending on the choice of ε such that |S(P, f, ζ) - ∫_a^b f(x) dx| < ε for all partition P of [a, b] with ||P|| < δ and for all selection of the intermediate points ζ.</p>

2. When is an integral $\int_{a}^{b} f(x) dx$ is said to be improper integral of the first kind, the second kind and the third kind?

What is meant by the statement " an improper integral of the first kind and the second kind are convergent "?

- (a) Discuss the convergence of the improper integral $\int_a^b \frac{dx}{(x-a)^p}$.
- (b) Discuss the convergence of the following improper integrals.

i.
$$\int_{1}^{\infty} \frac{\cos x}{x^2} dx.$$

ii. $\int_{2}^{\infty} \frac{x^2 - 1}{\sqrt{x^6 + 16}} dx.$
iii. $\int_{1}^{\infty} \frac{x}{3x^4 + 5x^2 + 1} dx$

- 3. Define the term " uniform convergence of a sequence of functions ".
 - (a) Let (f_n) be a sequence of bounded functions on A ⊆ ℝ. Prove that the sequence (f_n) converges uniformly on A to a bounded function f if and only if for each ε > 0 there is a natural number N_ε such that for all m, n ≥ N_ε, then ||f_m f_n|| < ε.
 - (b) Let f_n be a sequence of functions that are integrable on [a, b] and suppose that (f_n) converges uniformly on [a, b] to f. Prove that f is integrable and $\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$.
 - (c) Provide a sequence of functions $\{g_n\}$ converges to a function g on an interval [0, 1] such that $\int_0^1 g_n(x) dx$ and $\int_0^1 g(x) dx$ exist and $\lim_{n \to \infty} \int_0^1 g_n(x) dx = \int_0^1 g(x) dx$.

- 4. (a) Let $\{f_n\}$, $\{g_n\}$ be two sequences of functions defined over a non-empty set $E \subseteq \mathbb{R}$. Suppose also that
 - i. $\sum_{k=1}^{\infty} f_k(x)$ converges uniformly in E; ii. $\sum_{k=1}^{\infty} |g_{k+1}(x) - g_k(x)| \le M$ for all $x \in E$, for some M > 0; iii. $|g_1(x)| \le M$ for all $x \in E$. Prove that $\sum_{k=1}^{\infty} f_k(x)g_k(x)$ converges uniformly in E.

(b) Prove that $\sum_{k=1}^{\infty} \frac{\sin nx}{n}$ converges uniformly on $[\delta, \pi]$, where $\delta > 0$.

3