EASTERN UNIVERSITY, SRI LANKA
 SECOND EXAMINATION IN SCIENCE - 2004/2005
 SECOND SEMESTER (Oct./ Nov., 2006)
 MT 205 - DIFFERENTIAL GEOMETRY
 Proper \& Repeat

Answer all questions
Time : One hour

1. State and prove Serret-Frenet formula.

Let Γ be a curve of constant torsion τ and let a point Q be at a constant distance c from the point P on Γ on the binormal to Γ at P. Show that the angle between the binormal to the locus of Q and the binormal to the given curve Γ is $\tan ^{-1} \frac{c \tau^{2}}{\kappa \sqrt{1+c^{2} \tau^{2}}}$, where κ is the curvature of the curve Γ at P.
2. What is meant by saying that a curve is helix?

Prove, with the usual notations, that a necessary and sufficient condition for a helix is that $\frac{\tau}{\kappa}$ is constant.
Show that the curve $r(\underline{\theta})=(a \cos \theta, a \sin \theta, a \theta \cot \beta)$ is ahelix, where a is a constant.

