EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE (2004/05) SECOND SEMESTER (Oct./Nov.'2006) MT 218 - FIELD THEORY (Proper and Repeat)

Answer all questions
Time: Two hours

1. State Gauss's theorem in the electro-static field.
(a) A long cylinder carries a charge density $\rho=A r$ which is proportional to the distance r from the axis, where A is a constant. Find the electric field inside the cylinder as a function of r.
(b) Find the potential along the axis of a disk of charge density σ and radius b. Hence from this potential function find the electric field along the axis.
(c) Three charges, each of q, are placed at three corners of a square of size d. How much work is done to bring another charge $-3 q$ from far away to place it at the fourth corner? How much work is required to assemble the whole configuration of four charges?
2. (a) A line of charge has a charge density λ and is $2 L$ long. Find the electric field at a distance x from the centre and at right angel to the line of charge.
(b) A semi-infinite sheet of charge density σ is described by $-\infty<x<0,-\infty<y<\infty$ in the $z=0$ plane. Calculate the component of electric field normal to the sheet at a distance z directly above the edge at $x=0$.
(c) An infinite sheet of uniform charge density σ lying in the $z=0$ plane with a circular hole of radius a centered at the origin cut from it. Prove that the electric field along the z-axis is given by $\frac{\sigma z}{2 \epsilon_{0}\left(z^{2}+a^{2}\right)^{\frac{1}{2}}}$, where ϵ_{0} permitivity of the free space.
3. (a) A current I flows in a wire in the form of a part of the curve $2 \pi r=a \theta, 0 \leq \theta \leq 2 \pi$. Prove that the component of the magnetic field at a point distance z from O (origin of the coordinate system) in the direction normal through O to the plane of the wire is given by $\frac{I}{2}\left\{\frac{1}{a} \sinh ^{-1}\left(\frac{a}{z}\right)-\frac{1}{\sqrt{a^{2}+z^{2}}}\right\}$.
(b) A current I flows in a helical wire of radius a which has its axis along $O Z$ can be parameterized as $r=(a \cos \phi, a \sin \phi, \alpha \phi)$. If it has turns per unit length $\alpha=\frac{1}{2 n \pi}$, show that the component of the magnetic field along the axis is $n I$.
4. (a) Prove that the potential at a point P of distance r due to a thin hornogeneous spherical shell of matter of mass M, density σ per unit area and radius a is given by

$$
\mathbb{G}(p)=\left\{\begin{array}{lll}
\frac{M G}{r} & \text { if } & r>a \\
\frac{M G}{a} & \text { if } & r \leq a
\end{array}\right.
$$

where G is a gravitational constant.
(b) Assume that the density of a star is a function only of the radius r measured from the center of the star and is given by $\rho=\frac{M a^{2}}{2 \pi r\left(r^{2}+a^{2}\right)^{2}}, 0 \leq r<\infty$, where M is the mass of the star, and a is a constant which determines the size of the star. Find the gravitational potential inside the star as a function of r.

