EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATIN IN SCIENCE 2003/2004 FIRST SEMESTER (November/December, 2004)

 CS301 Computer Graphics

 CS301 Computer Graphics

 Answer all questions

 Answer all questions}

Answer all parts.

(a). Explain Bresenham's line drawing algorithms to generate straight lines with the absolute value of the slope is greater than one.
Describe how you could use your algorithm to draw straight lines with all cases of slope.

Illustrate Bresenham's line drawing algorithm for the line with endpoints $(-5,10)$ and $(-10,18)$.
(b). Describe Flood-Fill algorithm and Boundary-Fill algorithm to fill regions in a raster display.

Describe Liang-Barsky line clipping method to clip a given line against a given window.

Describe briefly a method to clip lines, which performs fewer comparisons and divisions than Liang-Barsky line clipping method.

Describe briefly the Sutherland-Hodgeman polygon clipping method to clip a given polygon against a given clip window. \{30\}

State the problem(s) in clipping polygons in this method and describe a method(s) to solve them.

Q3 Describe briefly the basic transformations that would be useful in two-dimensional graphics.

Consider the figures:

Compound object
Describe how you would draw the compound object from the primitive object. Give all the transformations needed in each step.

Consider the following two figures \mathbf{a} and \mathbf{b}, where ABFC and PQFR are two rectangles, where $\mathrm{PR}=2 \mathrm{AC}$ and $\mathrm{PQ}=1.5 \mathrm{AB}$

Figure: a

Figure: b

Describe the perspective projection.
Derive a transformation matrix to project a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ on to $\mathrm{Q}\left(\mathrm{x}_{\mathrm{v}}, \mathrm{y}_{\mathrm{v}}, \mathrm{z}_{\mathrm{v}}\right)$ on a plane pradlel to xy -plane but going through $\left(0,0, \mathrm{z}_{\mathrm{vp}}\right)$. The type of projection applied is perspective wihh reference point at $\left(0,0, \mathrm{z}_{\mathrm{rp}}\right)$.

Derive the transformation matrix for the orthographic parallel projection from the tansformation matrix of perspective projection.

Give transformation matrix that scale an object about the fixed point, $\mathrm{F}\left(\mathrm{x}_{\mathrm{f}}, \mathrm{yf}_{\mathrm{f}}, \mathrm{z}_{\mathrm{f}}\right)$, with the saling factors $\mathrm{S}_{\mathrm{x}}, \mathrm{S}_{\mathrm{y}}$, and S_{z} in the x -axis, y -axis and z -axis directions, respectively.

Consider the tetrahedron ABCD , where $\mathrm{A}=(5,5,5), \mathrm{B}=(20,0,0), \mathrm{C}=(0,20,0)$, $D=(0,0,20)$.
Suppose this object is scaled about the fixed point $\mathrm{A}=(5,5,5)$ with the uniform scaling of 2 . Draw the images of the object obtained by the perspective projection on xy -plane with rference point at $(0,0,25)$ and the orthographic parallel projection on xy-plane after the saling.

$$
\{30+15=45\}
$$

