EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE - 2003/2004

(NOV/DEC 2004)

FIRST SEMESTER

PH 303 NUCLEAR PHYSICS

Time: 01 hour.

Answer ALL Questions

[1] Explain what is meant by chain disintegration.

A freshly prepared radioisotope A decays via a daughter nucleus B into a stable element C.

Derive an expression for the number of daughter atoms N_B present at any later time t in terms of the original number N_{0A} of the parent atoms and the decay constants λ_A , λ_B of the parent and daughter nuclei.

If at time t=0, the number of atoms of B is zero, show that at $t=t_0$, it would be maximum, where $t_0 = \frac{\ln(\lambda_A/\lambda_B)}{\lambda_A - \lambda_B}$

Consider the decay scheme

$$RaE \xrightarrow{\beta} RaF \xrightarrow{\beta} RaG$$
 (stable)

A freshly purified sample of RaE weighs 2.00×10^{-10} gm at time t = 0. If the sample is not disturbed, calculate the time at which the greatest number of atoms of RaF will present and find this number

Half-life of RaE = 5 days, Half-life of RaF = 138 days, Atomic mass number of RaE is 210g and the Avacadro number is 6.023×10^{23} .

[2] What do you mean by elastic scattering?

An α -particle is elastically scattered from a proton which is initially at rest. Show that

$$\left(1 - \frac{M_p}{M_{\alpha}}\right) P_0^2 - 2P_0 P_1 \cos \theta_{\alpha} + \left(1 + \frac{M_p}{M_{\alpha}}\right) P_1^2 = 0$$

Where P_0 and P_1 are the initial and final momentum of the α - particle respectively. θ_{α} is the angle between the direction of scattered α - particle and its original direction.

 M_p , M_α are the masses of proton and α - particle respectively.

Show also that the minimum possible scattering angle θ_{α} is 14°29′ where, $M_p=1$ amu and $M_{\alpha}=4$ amu.