EASTERN UNIVERSITY, SRI LANKA

 THIRD EXAMINATION IN SCIENCE - 2003/2004 (NOV/DEC 2004)FIRST SEMESTER

PH 303 NUCLEAR PHYSICS

Time: 01 hour.
Answer ALL Questions
[1] Explain what is meant by chain disintegration.
A freshly prepared radioisotope A decays via a daughter nucleus B into a stable element C .
Derive an expression for the number of daughter atoms N_{B} present at any later time t in terms of the original number $N_{0 A}$ of the parent atoms and the decay constants λ_{A}, λ_{B} of the parent and daughter nuclei.
If at time $t=0$, the number of atoms of B is zero, show that at $t=t_{0}$, it would be maximum, where $t_{0}=\frac{\ln \left(\lambda_{A} / \lambda_{B}\right)}{\lambda_{A}-\lambda_{B}}$

Consider the decay scheme

$$
R a E \xrightarrow{\beta} R a F \xrightarrow{\beta} R a G \text { (stable) }
$$

A freshly purified sample of $R a E$ weighs $2.00 \times 10^{-10} \mathrm{gm}$ at time $\mathrm{t}=0$. If the sample is not disturbed, calculate the time at which the greatest number of atoms of RaF will present and find this number Half-life of RaE=5 days, Half-life of RaF=138 days, Atomic mass number of RaB is 210 g and the Avacadro number is 6.023×10^{23}.
[2] What do you mean by elastic scattering?
An α-particle is elastically scattered from a proton which is initially at rest. Show that

$$
\left(1-\frac{M_{p}}{M_{\alpha}}\right) P_{0}^{2}-2 P_{0} P_{1} \cos \theta_{\alpha}+\left(1+\frac{M_{p}}{M_{\alpha}}\right) P_{1}^{2}=0
$$

Where P_{0} and P_{1} are the initial and final momentum of the α-particle respectively. θ_{α} is the angle between the direction of scattered α-particle and its original direction.
M_{p}, M_{α} are the masses of proton and α - particle respectively.
Show also that the minimum possible scattering angle θ_{α} is $14^{\circ} 29^{\prime}$ where, $M_{p}=1 \mathrm{amu}$ and $M_{\alpha}=4 \mathrm{amu}$.

