EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE 2003/2004 SECOND SEMESTER (JUNE/JULY' 2005)

(Repeat)

MT 309 - NUMBER THEORY

Answer all questions

Time: Two hours

Seri Lonkan

- 1. (a) Define the greatest common divisor, gcd(a, b), of two integers a and b, not both zero.
 - (b) Use the Euclidean algorithm to find the greatest common divisor d of 198, 288 and 512. Hence find the integers x, y and z which satisfy the equation d = 198x + 288y + 512z.
 - (c) Prove that for any nonzero integers a and b, $lcm(a, b) \times gcd(a, b) = ab$.
 - (d) Define the greatest integer [x] of a real number x and show that [x] + 1 = [x + 1].
- 2. (a) Prove that if a, b and c are three nonnegative integers, where a and c are relatively prime and if $c \mid ab$ then $c \mid b$.
 - (b) Show that the linear Diophantine equation ax + by = c has solutions if and only if gcd(a, b) divides c.
 Further, let x₀, y₀ be any particular solution of this equation. Show that all other solutions are given by x = x₀ + ^b/_dt, y = y₀ ^a/_dt for each integer t, where d = gcd(a, b).
 - (c) A certain number of sixes and nines are added to give a sum of 126; if the number of sixes and nines are interchanged, the new sum is 114. How many of each were there originally?

1

- 3. Define Euler's ϕ function for any nonnegative integer n.
 - (a) State Euler's theorem and use it to prove $n^p \equiv n \pmod{p}$ for any integer n and any prime p.
 - (b) If $gcd(a, m) \equiv gcd(a 1, m) = 1$ then prove that $1 + a + a^2 + ... + a^{\phi(m)-1} \equiv 0 \pmod{m}.$
 - (c) If p is a prime number such that $p \equiv 1 \pmod{4}$ then using Wilson's theorem prove that $\left[\left(\frac{p-1}{2}\right)!\right]^2 \equiv -1 \pmod{p}$.
 - (d) Prove that the linear congruence $ax \equiv b \pmod{m}$ has solutions if and only if $d \mid b$, where $d = \gcd(a, m)$.

Further, show that if $d \mid b$ it has d mutually incongruent solutions modulo m.

- (e) Find a complete set of mutually incongruent solutions of $3x \equiv 6 \pmod{15}$.
- 4. (a) If $a \equiv b \pmod{m_1}$ and $a \equiv b \pmod{m_2}$ then show that $a \equiv b \pmod{m_1 m_2}$, where $gcd(m_1, m_2) = 1$.
 - (b) Define a *pseudoprime* and show that there are infinitely many pseudoprimes to the base 2.
 - (You may use the result that if d and n are natural numbers and $d \mid n$ then $(2^d 1) \mid (2^n 1)$).
 - (c) Define Carmichael numbers and show that 6601 is a Carmichael number.
 - (d) If a belongs to the exponent h modulo m and if $a^r \equiv 1 \pmod{m}$ then show that $h \mid r$.
 - (e) If a belongs to the exponent h modulo m and if gcd(k, h) = d then show that a^k belongs to the exponent $\frac{h}{d}$ modulo m.