EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE 2003/2004

 SECOND SEMESTER (JUNE/JULY' 2005)(Repeat)

MT 309 - NUMBER THEORY

1. (a) Define the greatest common divisor, $\operatorname{gcd}(a, b)$, of two integers a and b, not both zero.
(b) Use the Euclidean algorithm to find the greatest common divisor d of 198, 288 and 512. Hence find the integers x, y and z which satisfy the equation $d=198 x+288 y+512 z$.
(c) Prove that for any nonzero integers a and $b, \operatorname{lcm}(a, b) \times \operatorname{gcd}(a, b)=a b$.
(d) Define the greatest integer $[x]$ of a real number x and show that $[x] .+1=[x+1]$.
(a) Prove that if a, b and c are three nonnegative integers, where a and c are relatively prime and if $c \mid a b$ then $c \mid b$.
(b) Show that the linear Diophantine equation $a x+b y=c$ has solutions if and only if $\operatorname{gcd}(a, b)$ divides c.

Further, let x_{0}, y_{0} be any particular solution of this equation. Show that all other solutions are given by $x=x_{0}+\frac{b}{d} t, y=y_{0}-\frac{a}{d} t$ for each integer t, where $d=\operatorname{gcd}(a, b)$.
(c) A certain number of sixes and nines are added to give a sum of 126 ; if the number of sixes and nines are interchanged, the new sum is 114. How many of each were there originally?
3. Define Euler's ϕ - function for any nonnegative integer n.
(a) State Euler's theorem and use it to prove $n^{p} \equiv n(\bmod p)$ for any integer n and any prime p.
(b) If $\operatorname{gcd}(a, m)=\operatorname{gcd}(a-1, m)=1$ then prove that $1+a+a^{2}+\ldots+a^{\phi(m)-1} \equiv 0(\bmod m)$.
(c) If p is a prime number such that $p \equiv 1(\bmod 4)$ then using Wilson's theorem prove that $\left[\left(\frac{p-1}{2}\right)!\right]^{2} \equiv-1(\bmod p)$.
(d) Prove that the linear congruence $a x \equiv b(\bmod m)$ has solutions if and only if $d \mid b$, where $d=\operatorname{gcd}(a, m)$.
Further, show that if $d \mid b$ it has d mutually incongruent solutions modulo m.
(e) Find a complete set of mutually incongruent solutions of $3 x \equiv 6(\bmod 15)$.
4. (a) If $a \equiv b\left(\bmod m_{1}\right)$ and $a \equiv b\left(\bmod m_{2}\right)$ then show that $a \equiv b\left(\bmod m_{1} m_{2}\right)$, where $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$.
(b) Define a pseudoprime and show that there are infinitely many pseudoprimes to the base 2.
(You may use the result that if d and n are natural numbers and $d \mid n$ then $\left.\left(2^{d}-1\right) \mid\left(2^{n}-1\right)\right)$.
(c) Define Carmichael numbers and show that 6601 is a Carmichael number.
(d) If a belongs to the exponent h modulo m and if $a^{r} \equiv 1(\bmod m)$ then show that $h \mid r$.
(e) If a belongs to the exponent h modulo m and if $\operatorname{gcd}(k, h)=d$ then show that a^{k} belongs to the exponent $\frac{h}{d}$ modulo m.

