EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE 2003/2004

15 ELI

June/July 2005 SECOND SEMESTER MT 301 - GROUP THEORY <u>REPEAT</u>

Answer all questions Time: Three hours

- 1. (a) Define the following terms:
 - i. Group and,
 - ii. Subgroup of a group.
 - (b) Let H be a non-empty subset of a group G. Prove that, H is a subgroup of G if and only if ab⁻¹ ∈ H, ∀ a, b ∈ H.
 - (c) Let H be a subgroup of a group G. Prove that $H^{-1} = H$ and $H^n = H \quad \forall n \in \mathbb{N}.$

Is it true that, if $H^{-1} = H$ then H is a subgroup of G? Justify your answer.

- (d) Let H and K be two subgroups of a group G. Prove that
 - i. $H \cup K$ need not be a subgroup of G, and
 - ii. if $H \cup K$ is a subgroup of G, then $H \subseteq K$ or $K \subseteq H$.
 - iii. Let $\{H_{\alpha}\}_{\alpha \in I}$ be an arbitrary family of subgroups of a group G, then prove that $\bigcap_{\alpha \in I} H_{\alpha}$ is a subgroup of G.

- .2. (a) State and prove Lagrange's theorem for a finite group G.
 - (b) In a group G, H and K are different subgroups of order p, p is prime. Show that $H \cap K = \{e\}$, where e is the identity element of G.
 - (c) Prove that in a finite group G, the order of each element divides order of G. Hence prove that $x^{|G|} = e$, $\forall x \in G$.
 - (d) Let G be a non-abelian group of order 10. Prove that G contains at least one element of order 5.
 - (e) If every non-identity element of a group G has order 2, show that G is abelian.
- 3. (a) State and prove the first isomorphism theorem.
 - (b) Let H be a subgroup of a group G and K be a normal subgroup of G. Prove with usual notations that,
 - i. $K \leq HK$. ii. $\frac{H}{H \cap K} \cong \frac{HK}{K}$.
- 4. What is meant by "two elements are conjugate in a group G "?

(a) Let G be a group and $a, b \in G$. Define a relation "~" on G by $a \sim b \Leftrightarrow a$ and b are conjugate in G.

Prove that "~" is an equivalence relation on G. Given $a \in G$, let $\Gamma(a)$ denote the equivalence class containing a. Show that $|\Gamma(a)| = [G : C(a)]$, and $a \in Z(G) \Leftrightarrow \Gamma(a) = \{a\}$, where $C(a) = \{x \in G \mid ax = xa\}$ and Z(G) is the center of the group G.

(b) Write down the class equation of a finite group G.
Hence or otherwise, prove that if the order of G is pⁿ, where p is a prime number and n is a positive integer then the center of G is non-trivial.

. (a) Define the term "p-group".

Let G be a finite abelian group and let p be a prime number which divides the order of G. Prove that G has an element of order p.

Enstern

5 SET 2005

Sri Lank

- (b) Let G' be the commutator subgroup of a group G. Prove the following:
 - i. G is abelian if and only if $G' = \{e\}$, where e is the identity element of G.
 - ii. G' is a normal subgroup of G.
 - iii. $\frac{G}{G'}$ is abelian.

6. Define the following terms:

- * homomorphism
- * isomorphism
- * automorphism and inner automorphism.
- (a) Prove the following:
 - i. homomorphic image of an abelian group is abelian.
 - ii. homomorphic image of a cyclic group is cyclic.
- (b) Let AutG be the set of all automorphism of a group G and let InnG be the set of all inner automorphism of G. Show-that,
 - i. AutG is a group under composition of maps.
 - ii. InnG is a normal subgroup of AutG.