

Answer five questions only Time: Three hours

- (a) Define the following terms:
 - i. Group and,
 - ii. subgroup.
- (b) Let H be a non-empty subset of a group G. Prove that, H is a subgroup of G if and only if ab⁻¹ ∈ H, ∀ a, b ∈ H.
- (c) Let H and K be subgroups of a group G. Prove that HK is a subgroup of G if and only if HK = KH.
- (d) Let H and K be two subgroups of a group G. Is it true that $H \cup K$ is a subgroup of G? Justify your answer.
- (e) Let $\{H_{\alpha}\}_{\alpha \in I}$ be an arbitrary family of subgroups of a group G, then prove that $\bigcap_{\alpha \in I} H_{\alpha}$ is a subgroup of G.

- .2. (a) State and prove Lagrange's theorem for a finite group G.
 - (b) In a group G, H and K are different subgroups of order p, p is prime. Show that $H \cap K = \{e\}$, where e is the identity element of G.
 - (c) Prove that in a finite group G, the order of each element divides order of G. Hence prove that $x^{|G|} = e$, $\forall x \in G$.
 - (d) Let G be a non-abelian group of order 10. Prove that G contains at least one element of order 5.
 - (e) If every non-identity element of a group G has order 2, show that G is abelian.
 - 3. (a) State and prove the first isomorphism theorem.
 - (b) Let H be a subgroup of a group G and K be a normal subgroup of G. Prove with usual notations that,

i.
$$K \trianglelefteq HK$$
.
ii. $\frac{H}{H \cap K} \cong \frac{HK}{K}$

- 4. What is meant by "two elements are conjugate in a group G"?
 - (a) Let G be a group and $a, b \in G$. Define a relation " ~ " on G by

 $a \sim b \Leftrightarrow a \text{ and } b \text{ are conjugate in } G.$

Prove that " \sim " is an equivalence relation on G.

Given $a \in G$, let $\Gamma(a)$ denote the equivalence class containing a. Show that $|\Gamma(a)| = [G : C(a)]$, and $a \in Z(G) \Leftrightarrow \Gamma(a) = \{a\}$, where

 $C(a) = \{x \in G \mid ax = xa\}$ and Z(G) is the center of the group G.

(b) Write down the class equation of a finite group G.
Hence or otherwise, prove that if the order of G is pⁿ, where p is a prime number and n is a positive integer than the center of G is non-trivial.

(a) Define the term "p-group". 5.

Yern University Let G be a finite abelian group and let p be a prime number which divides the order of G. Prove that G has an element of order p.

- (b) Let G' be the commutator subgroup of a group G. Prove the following:
 - i. G is abelian if and only if $G' = \{e\}$, where e is the identity element of G.
 - ii. G' is a normal subgroup of G. iii. $\frac{G}{G'}$ is abelian.
- 6. Prove or disprove the following:
 - (a) Let G be a group and Z(G) be the centre of G. If $\frac{G}{Z(G)}$ is cyclic then G is abelian.
 - (b) Let G be a finite group. Then O(ab) = O(ba) for all $a, b \in G$. (O(x) stands for the order of the element x.)
 - (c) Every abelian group is cyclic.
 - (d) Let $\Phi: G \to G_1$ be a homomorphism, where G and G_1 are two groups. If H is a normal subgroup of G then $\Phi(H)$ is a normal subgroup of G_1 .
 - (e) Homomorphic image of a *p*-group is *p*-group.
- 7. Define the following terms:
 - * homomorphism
 - * isomorphism
 - * automorphism and inner automorphism.
 - (a) Prove the following:
 - i. homomorphic image of an abelian group is abelian.
 - ii. homomorphic image of a cyclic group is cyclic.

- (b) Let AutG be the set of all automorphism of a group G and let InnG be the set of all inner automorphism of G. Show that,
 - i. AutG is a group under composition of maps.
 - ii. InnG is a normal subgroup of AutG.
- 8. (a) Define the following terms in the symmetric group S_n $(n \ge 2)$:
 - i. transposition.
 - ii. cycle of order $r \ (1 \le r \le n)$.
 - iii. signature of a permutation.

Using the first isomorphism theorem or otherwise prove that the set of all even permutations of S_n forms a normal subgroup of S_n .

(b) Express the permutation f in S_8 as a product of disjoint cycles, where

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 7 & 4 & 2 & 8 & 1 & 6 \end{pmatrix}$$