EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE 2003/2004

June/July 2005
 MT 301 - GROUP THEORY RE-REPEAT

Answer five questions only
 Time: Three hours

(a) Define the following terms:
i. Group and, ii. subgroup.
(b) Let H be a non-empty subset of a group G. Prove that, H is a subgroup of G if and only if $a b^{-1} \in H, \quad \forall a, b \in H$.
(c) Let H and K be subgroups of a group G. Prove that $H K$ is a subgroup of G if and only if $H K=K H$.
(d) Let H and K be two subgroups of a group G. Is it true that $H \cup K$ is a subgroup of G ? Justify your answer.
(e) Let $\left\{H_{\alpha}\right\}_{\alpha \in I}$ be an arbitrary family of subgroups of a group G, then prove that $\bigcap H_{\alpha}$ is a subgroup of G.
2. (a) State and prove Lagrange's theorem for a finite group G.
(b) In a group G, H and K are different subgroups of order p, p is prime. Show that $H \cap K=\{e\}$, where e is the identity element of G.
(c) Prove that in a finite group G, the order of each element divides order of G. Hence prove that $x^{|G|}=e, \quad \forall x \in G$.
(d) Let G be a non-abelian group of order 10 . Prove that G contains at least one element of order 5 .
(e) If every non-identity element of a group G has order 2 , show that G is abelian.
3. (a) State and prove the first isomorphism theorem.
(b) Let H be a subgroup of a group G and K be a normal subgroup of G. Prove with usual notations that,
i. $K \unlhd H K$.
ii. $\frac{H}{H \cap K} \cong \frac{H K}{K}$.
4. What is meant by " two elements are conjugate in a group G "?
(a) Let G be a group and $a, b \in G$. Define a relation " \sim " on G by $a \sim b \Leftrightarrow a$ and b are conjugate in G.

Prove that " \sim " is an equivalence relation on G.
Given $a \in G$, let $\Gamma(a)$ denote the equivalence class containing a.
Show that $|\Gamma(a)|=[G: C(a)]$, and $a \in Z(G) \Leftrightarrow \Gamma(a)=\{a\}$, where $C(a)=\{x \in G / a x=x a\}$ and $Z(G)$ is the center of the group G.
(b) Write down the class equation of a finite group G.

Hence or otherwise, prove that if the order of G is p^{n}, where p is a prime number and n is a positive integer then the center of G is non-trivial.
5. (a) Define the term " p-group".

Let G be a finite abelian group and let p be a prime number which divides the order of G. Prove that G has an element of order p.
(b) Let G^{\prime} be the commutator subgroup of a group G. Prove the following:
i. G is abelian if and only if $G^{\prime}=\{e\}$, where e is the identity element of G.
ii. G^{\prime} is a normal subgroup of G.
iii. $\frac{G}{G^{\prime}}$ is abelian.
6. Prove or disprove the following:
(a) Let G be a group and $Z(G)$ be the centre of G. If $\frac{G}{Z(G)}$ is cyclic then G is abelian.
(b) Let G be a finite group. Then $O(a b)=O(b a)$ for all $a, b \in G$. $(O(x)$ stands for the order of the element x.
(c) Every abelian group is cyclic.
(d) Let $\Phi: G \rightarrow G_{1}$ be a homomorphism, where G and G_{1} are two groups. If H is a normal subgroup of G then $\Phi(H)$ is a normal subgroup of G_{1}.
(e) Homomorphic image of a p-group is p-group.
7. Define the following terms:

* homomorphism
* isomorphism
* automorphism and inner automorphism.
(a) Prove the following:
i. homomorphic image of an abelian group is abelian.
ii. homomorphic image of a cyclic group is cyclic.
(b) Let $A u t G$ be the set of all automorphism of a group G and let Inn G be the set of all inner automorphism of G. Show that,
i. AutG is a group under composition of maps.
ii. $\operatorname{Inn} \boldsymbol{G}$ is a normal subgroup of $\boldsymbol{A} u t G$.

8. (a) Define the following terms in the symmetric group $S_{n}(n \geq 2)$:
i. transposition.
ii. cycle of order $r(1 \leq r \leq n)$.
iii. signature of a permutation.

Using the first isomorphism theorem or otherwise prove that the set of all even permutations of S_{n} forms a normal subgroup of S_{n}.
(b) Express the permutation f in S_{8} as a product of disjoint cycles, where

$$
f=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 5 & 7 & 4 & 2 & 8 & 1 & 6
\end{array}\right)
$$

