EASTERN UNIVERSITY, SRI LANKA

SECOND SEMESTER

MT 303 - FUNCTIONAL ANALYSIS

Answer all questions

Time: 2 hours

1. Define the term " Banach space ".
(a) Show that the sequence space

$$
l^{\infty}=\left\{x=\left(x_{i}\right) ; x_{i} \in \mathbb{C}, \sup _{i}\left|x_{i}\right|<\infty\right\}
$$

with the norm defined by $\|x\|=\sup _{i}\left|x_{i}\right|$ is a Banach space.
(b) Show with the usual notation that $\left(e_{i}\right)_{i=1}^{\infty}$ is a Schauder basis for C_{0}, where
$C_{0}=\left\{x=\left(x_{i}\right): x_{i} \in \mathbb{C},\left(x_{i}\right)\right.$ converges to zero $\}$ with the norm

$$
\|x\|=\sup _{i \in \mathbb{N}}\left|x_{i}\right| .
$$

2. Let $\left\{x_{1}, x_{2}, \ldots \ldots \ldots . . x_{n}\right\}$ be a linearly independent set of vectors in a norm linear space X. Prove that there is a number $c>0$ such that

$$
\left\|\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots \ldots \ldots+\beta_{n} x_{n}\right\| \geq c\left(\left|\beta_{1}\right|+\left|\beta_{2}\right|+\ldots \ldots .+\left|\beta_{n}\right|\right)
$$

for every choice of scalars $\beta_{1}, \beta_{2}, \ldots \ldots, \beta_{n}$.
Hence prove that a finite dimensional subspace Y of X is complete.
3. Prove or disprove the following;
(a) Let X and Y be two norm linear spaces and let $T: X \rightarrow Y$ be linear. T is continuous if and only if T is bounded.
(b) Every linear operator on a norm linear space is bounded.
(c) The dual space of l^{1} is l^{∞}.
4. State the Hahn Banach theorem for norm linear spaces.
(a) Let X be a norm linear space and let $x_{0} \neq 0$ be any element of X. Prove that there exists a bounded linear functional f^{*} on X such that

$$
\left\|f^{*}\right\|=1 \text { and } f^{*}\left(x_{0}\right)=\left\|x_{0}\right\| \text { and }
$$

prove that
if $f(x)=f(y)$ for every bounded linear functional on X then $x=y$.
(b) Let Y be a proper closed subspace of a norm linear space X.

Let $x_{0} \in X \backslash Y$ and $\delta=\inf _{y \in Y}\left\|y-x_{0}\right\|$. Show that there exists a bounded linear functional F on X such that $\|F\|=1, F(y)=0 \quad \forall y \in Y$ and $F\left(x_{0}\right)=\delta$.

