EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE - 2003/2004
 SECOND SEMESTER

(JUNE/JULY 2005)

PH 305 FUNDAMENTALS OF STATISTICAL PHYSICS

Time: 01 hour.
Answer ALL Questions

You may find the following information useful.
Plank's constant $h=6.625 \times 10^{-34} J S$
Mass of an electron $m_{e}=9.109 \times 10^{-31} \mathrm{~kg}$
Charge of an electron $e=1.602 \times 10^{-19}$ Coulomb

1. Explain the terms "partition function" and "density of states" as used in statistical physics? State the conditions for a system to obey Maxwell-Boltzmann statistics and derive an expression for the Maxwell-Boltzmann distribution function in terms of the partition function of the system.
Using Maxwell-Boltzmann distribution function, show that for a system of N molecules of an ideal gas at absolute temperature T, the number of molecules in energy range E and $E+d E$ is given by

$$
N(E) d E=2 \pi N\left(\frac{1}{\pi k_{B} T}\right)^{\frac{3}{2}} E^{\frac{1}{2}} e^{-\frac{E}{k_{B} T}} d E \quad \text { where, the symbols have their usual meanings. }
$$

Hence show that the ratio of the mean energy to the most probable energy of molecules is $3: 1$.

You may use the following informations useful:
The thermodynamic probability of Maxwell-Boltzmann statistics is given by $\Omega=N!\prod_{j=1}^{N} \frac{g_{j}^{N_{j}}}{N_{j}!}$
The density of states of the ideal gas in the energy range between E and $E+d E$ is

$$
g(E) d E=2 \pi V\left(\frac{2 m}{h^{2}}\right)^{\frac{3}{2}} E^{\frac{1}{2}} d E
$$

The partition function of the ideal gas is $Z=V\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{\frac{3}{2}}$ and

$$
\int_{0}^{\infty} x^{4} e^{-a x^{2}} d x=\frac{3}{8} \sqrt{\frac{\pi}{a^{5}}}
$$

12. State the conditions under which a system of particles obeys Fermi-Diac statistics. Identifying clearly the quantities involved, write down the expression for Fermi-Dirac distribution law.
(a) Use the above expression for free electrons in a metal to show that at $T=0$, the Fermi energy is given by

$$
E_{F}=\frac{h^{2}}{8 m}\left(\frac{3 N}{\pi V}\right)^{\frac{2}{3}} \text {, where the symbols have their usual meanings. }
$$

Calculate the Fermi energy in Copper using the following data:
Density of Copper $=8.94 \times 10^{3} \mathrm{kgm}^{-3}$
Atomic mass of Copper $=63.5$ a.m. u and

$$
\text { 1a.m.u }=1.66 \times 10^{-27} \mathrm{~kg}
$$

(b) Show that the mean energy of a free electron is given by $\frac{3}{5} E_{F}$. Hence briefly discuss the significance of E_{F}.

You may use the degeneracy function $g(E)$ for free electrons in a metal given by

$$
g(E) d E=4 \pi V\left(\frac{2 m}{h^{2}}\right)^{\frac{3}{2}} E^{\frac{1}{2}} d E
$$

