

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE - 2004/2005 FIRST SEMESTER (Jan./ Feb., 2006)

MT 304 - GENERAL TOPOLOGY

Answer all questions

Time allowed : Two hours

1. (a) Define the term topological space.

Let X be a non-empty set and let τ be the family consisting the empty set Φ and all those non-empty subsets of X, whose complements are countable. Show that (X, τ) is a topological space.

- (b) Let A be a non-empty subset of a topological space (X, τ) . Prove the following:
 - i. \overline{A} is the smallest closed superset of A,
 - ii. $\overline{A} = A \cup A'$,

iii. $x \in \overline{A}$ if and only if $\forall G \in \tau$ with $x \in G$ and $G \cap A \neq \Phi$,

iv. $\operatorname{Fr}(A) = \overline{A} \cap \overline{A^c}$, where $\operatorname{Fr}(A)$ is the set of all frontier points of A.

- Define the term disconnected set in a topological space.
 Prove the following:
 - (a) A topological space (X, τ) is disconnected if and only if there exist a non-empty proper subset of X which is both open and closed,
 - (b) A topological space (X, τ) is disconnected if and only if there exist a non-empty proper subset A of X such that $Fr(A) = \Phi$,
 - (c) Continuous image of a connected set is connected.

- 3. Let f be a function from a topological space (X, τ_X) to a topological space $(Y; \tau_Y)$. Prove that the following statements are equivalent:
 - (a) f is continuous.
 - (b) $f^{-1}(G)$ is open in X whenever G is open in Y.
 - (c) $f^{-1}(H)$ is closed in X whenever H is closed in Y.
 - (d) $f(\overline{A}) \subseteq \overline{f(A)} \qquad \forall A \subseteq X.$
- 4. Define the Frechet space (T_1) and the Hausdorff space (T_2) .
 - (a) Prove that every Hausdorff space is Frechet space. Is the converse true? Justify your answer.
 - (b) If A be a non-empty proper compact subset of a Hausdorff space then prove that A is closed.
 - (c) If A and B are two non-empty disjoint proper compact subsets of a Hausdorff space then show that there exist two disjoint open subsets G and H such that $A \subseteq G$ and $B \subseteq H$.

Is to be out a third space $\mathbb{P}_{\mathbf{k}} \cap \mathbf{k} = \{\mathbf{k}, \mathbf{s}\}$

in proper subset of 3" which is path approximated