

nswer all questions

Time: Two hours

1. (a) Define the term metric space.

Let (X, d) be a metric space. Define a mapping $d': X \times X \longrightarrow \mathbb{R}$ by

 $d'(x,y) = \min(1,d(x,y)).$

Show that d' is a metric on X.

- (b) Let (X, d) be a metric space and let (a_n) , (b_n) be sequence in X. Prove that
 - i. if $a_n \longrightarrow a$ and $b_n \longrightarrow b$ as $n \to \infty$ then $d(a_n, b_n) \longrightarrow d(a, b)$ as $n \to \infty$;
 - ii. if (a_n) is convergent then it is bounded.
- 2. (a) Let A be a subset of a metric space (X, d). Define the followings:
 - i. Closure of A;
 - ii. Subspace of (X, d).
 - (b) Let (X, d) be a complete metric space and Y be a subspace of X. Prove that Y is complete if and only if Y is closed in (X, d).
 - (c) Prove that if A is a subset of metric space (X, d) then closure of A is the smallest closed set contains A.
 - (d) Prove that in any metric space, singleton sets are closed sets.

- 3. (a) Define the following terms in a metric space:
 - i. Separated set;
 - ii. Disconnected set.
 - (b) Let Y be a subset of a metric space (X, d): Prove that the following statements are equivalent.
 - i. Y is connected;

ii. Y cannot be expressed as a disjoint union of two non-empty closed sets in Y; iii. Φ and Y are the only sets which are both open and closed in Y.

- (a) What is meant by a function from a metric space (X, d) to a metric space (Y, ρ) is continuous at a ∈ X?
 - i. Let (X, d_X) and (Y, d_Y) be two metric spaces. Prove that a mapping $f : X \longrightarrow Y$ is continuous on X if and only if for all closed sets of G in Y, the set $f^{-1}(G)$ is closed in X.
 - ii. Let X = C[0, 1], the set of all continuous functions on [0, 1], and let d be a metric on X defined by $d(f, g) = \int_0^1 |f(x) - g(x)| dx$. If $f_n(x) = x^n$ for all $x \in [0, 1]$ and $n \in \mathbb{N}$ then show that the sequence (f_n) converges in X.
 - (b) Define the term compact set.

Prove that the set $[0,1] \subset \mathbb{R}$ is compact.