EASTERN UNIVERSITY, SRI LANK A
DEPARTMENT OF MATHEMATICS
17

SECOND EXAMINATION IN SCIENCE -2008/2009
SECOND SEMESTER (Sept./Oct., 2010)
MT 205 - DIFFERENTIAL GEOMETRY (PROPER \& REPEAT)

Answer all Questions
Time: One hour

1. (a) State the Frenet - Serret formula.

If $\underline{r}=\underline{r}(s)$ is the position vector of a point P with arc-length s as a parameter on a curve C, then show that:
i. $\underline{r}^{\prime \prime} \cdot \underline{r}^{\prime \prime}=\kappa^{2}$;
ii. $\left[\underline{r}^{\prime}, \underline{r}^{\prime \prime}, \underline{r}^{\prime \prime \prime}\right]=\kappa^{2} \cdot \tau$;
where $\underline{r}^{\prime}=\frac{d \underline{r}}{d s}, \kappa$ is the curvature and τ is the torsion of the curve C.
(b) Show that the curve

$$
\underline{r}_{1}=-\frac{1}{\tau} \underline{n}+\int \underline{b} d s
$$

has constant curvature $\pm \tau$ when the curve $\underline{r}=\underline{r}(s)$ has constant torsion τ.
(c) Let C be a curve with constant torsion at any point P on the curve. Point Q is taken at a constant distance c from the point P on the binormal to the curve C at P. Show that the angle between the binormal to the locus of Q and the binormal of the given curve is

$$
\tan ^{-1}\left(\frac{c \tau^{2}}{\kappa \sqrt{1+c^{2} \tau^{2}}}\right)
$$

2. Define the terms involute and evolute of a curve.
(a) With the usual notations show that the equation of involute of the curve $C: \underline{r}=\underline{r}(s)$ is given by

$$
\underline{R}=\underline{r}+(c-s) \underline{t}
$$

where c is a constant.
(b) Find the involute and evolute of the cubic curve given by

$$
\underline{r}(u)=\left(3 u, 3 u^{2}, 2 u^{3}\right)
$$

