

EASTERN UNIVERSITY, SRI LANKA <u>DEPARTMENT OF MATHEMATICS</u> <u>SECOND EXAMINATION IN SCIENCE -2008/2009</u> <u>SECOND SEMESTER (Sept./Oct., 2010)</u> <u>MT 205 - DIFFERENTIAL GEOMETRY</u> (PROPER & REPEAT)

Answer all Questions

Time: One hour

1. (a) State the Frenet - Serret formula.

If $\underline{r} = \underline{r}(s)$ is the position vector of a point P with arc-length s as a parameter on a curve C, then show that:

i. $\underline{r}'' \cdot \underline{r}'' = \kappa^2;$

ii.
$$[\underline{r}', \underline{r}'', \underline{r}'''] = \kappa^2 \tau$$

where $\underline{r}' = \frac{d\underline{r}}{ds}$, κ is the curvature and τ is the torsion of the curve C.

(b) Show that the curve

$$\underline{r}_1 = -\frac{1}{\tau}\underline{n} + \int \underline{b}ds$$

has constant curvature $\pm \tau$ when the curve $\underline{r} = \underline{r}(s)$ has constant torsion τ .

(c) Let C be a curve with constant torsion at any point P on the curve. Point Q is taken at a constant distance c from the point P on the binormal to the curve C at P. Show that the angle between the binormal to the locus of Q and the binormal of the given curve is

$$\tan^{-1}\left(\frac{c\tau^2}{\kappa\sqrt{1+c^2\tau^2}}\right).$$

- 2. Define the terms involute and evolute of a curve.
 - (a) With the usual notations show that the equation of *involute* of the curve $C: \underline{r} = \underline{r}(s)$ is given by

 $\underline{R} = \underline{r} + (c-s)\underline{t},$

where c is a constant.

(b) Find the involute and evolute of the cubic curve given by

$$\underline{r}(u) = (3u, 3u^2, 2u^3).$$