EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
SECOND EXAMINATION IN SCIENCE -2008/2009
SECOND SEMESTER (Sept./Oct., 2010)
MT 218 - FIELD THEORY
(PROPER \& REPEAT)

Answer all Questions
Time: Two hours

1. State the Coulomb's law in an electric field.
(a) Define the term electric field strength due to a point charge.
i. A uniformly charged disk of radius $R$ with a total charge $Q$ lies in the $x y$-plane. Find the electric field at a point $P$, along the $z$-axis that passes through the center of the disk perpendicular to its plane. Discuss the limit where $R \gg z$.
ii. Two infinite plane sheets are separated by a distance ' $d$ '. The first has a charge density $+\sigma$ and the second has a charge density $-\sigma$. Find the electric field intensity at any point between them.
(b) A thin rod extends along the $z$-axis from $z=-d$ to $z=d$. The rod carries a positive charge $Q$ uniformly distributed along its length $2 d$ with charge density $\lambda=\frac{Q}{2 d}$.
i. Calculate the electric potential at a point $z>d$ along the $z$-axis.
ii. What is the change in potential energy if an electron moves from $z=4 d$ to $z=3 d$ ?
iii. If the electron started out at rest at the point $z=4 d$, what is its velocity at $z=3 d$ ?
2. State the Gauss's theorem in an electric field.
(a) Define the term electric flux.
i. Show that the electric flux through a square surface of edges $2 l$ due to a charge $+Q$ located at a perpendicular distance $l$ from the center of the square is $\frac{Q}{6 \epsilon_{0}}$, where $\epsilon_{0}$ is the permiability constant.
ii. Using the result obtained in the above part, if the charge $+Q$ is now at the center of a cube of side $2 l$, find the total flux emerging from all the six faces of the closed surface.
(b) Define the term electric dipole.

Prove that the electric potential $V$ at a point $Q$ at a distance $r$ form the dipole of moment $\underline{P}$ is given by

$$
V=-\frac{1}{4 \pi \varepsilon_{0}}\left\{\underline{P} \cdot \operatorname{grad}\left(\frac{1}{r}\right)\right\}
$$

and the electric field due to the dipole is given by

$$
\underline{E}=\frac{1}{4 \pi \varepsilon_{0}}\left\{\frac{3(\underline{P} \cdot \underline{r}) \underline{r}}{r^{5}}-\frac{\underline{P}}{r^{3}}\right\}
$$

3. (a) Using the separation of variables or otherwise, show that the appropriate separable solution of the Laplace equation $\nabla^{2} \phi=0$, where $\phi$ is a potential function in three dimensional rectangular coordinates is given by $\phi(x, y, z)=\left(A e^{\sqrt{\left(k^{2}+l^{2}\right)} x}+B e^{-\sqrt{\left(k^{2}+l^{2}\right)} x}\right)(C \sin k y+D \cos k y)(E \sin l z+F \cos l z)$, where $A, B, C, D, E, F, k$ and $l$ are arbitrary constants.
(b) An infinitely long rectangular metal pipe (side $a$ and $b$ ) is grounded, but one end, at $x=0$, is maintained at a specified potential $\phi_{0}(y, z)$. Show that the potential inside the pipe subject to the boundary conditions:
i. $\phi=0$ when $y=0$;
ii. $\phi=0$ when $y=a$;
iii. $\phi=0$ when $z=0$;
iv. $\phi=0$ when $z=b$;
v. $\phi \rightarrow 0$ as $x \rightarrow \infty$;
vi. $\phi=\phi_{0}(y, z)$, when $x=0$; is given by

$$
\phi(x, y, z)=\frac{16 \phi_{0}}{\pi^{2}} \sum_{n, m=1,3,5, \ldots} \frac{1}{n m} e^{-\pi \sqrt{\left(\frac{n}{a}\right)^{2}+\left(\frac{m}{b}\right)^{2}} x}
$$

Onferalty, Sol
4. (a) Define the magnetic flux density $\underline{B}$ and show that div $\underline{B}=0$ in space. State the Ampere's law in integral form and deduce that Curl $\underline{B}=\mu_{0} \underline{J}$, where $\underline{J}$ is the current density.
(b) State the Riot - Savart law.

Find the magnetic field at a distance $d$ from an infinitely long wire which flow a current $I$.

Hence calculate the magnetic field at the center of a current carrying square coil of a wire with sides $2 a$.
(c) Consider a closed semi circular loop lying in the $x y$ plane carrying a current $I$ in the counter clockwise direction. If a uniform magnetic field is applied in the positive $y$ direction, find the magnetic force acting on the straight segment and the semi circular portion.

