EASTERN UNIVERSITY, SRILANKA
 THIRD EXAMINATION IN SCIENCE
 THIRD YEAR FIRST SEMESTER-2004/2005 (Nov./Dec., 2006)

CS301-Computer Graphics [Special Repeat]

Answer all questions

Time: 2 Hour

Q1)

1. Define the graphics terms Window and View Port.
[20 Marks]
2. Give an algorithm to draw the circle using Midpoint Circle technique.
[50 Marks]
3. Using your above algorithm compute successive points to plot in the display in order to draw the first quarter of the circle with center at $(20,20)$ and radius 7 .
[30 Marks]

Q2)

1. Explain Bresenham's line drawing method and algorithm to generate straight line with slope less than one.
2. Show how you would modify your algorithm to draw straight line with any slope.
[20 Marks]
3. Using your above algorithm compute successive points to plot in the display in order to draw a straight line from the point $(1,2)$ to the point $(\mathbf{1 0 , 1 2})$.
4. Describe and distinguish Flood-Fill Algorithm and Boundary-Fill Algorithm to fill regions in a raster display.
5. Describe all basic transformation that would be useful in two-dimensional graphics and give the transformation matrices.
6. Give the transformation matrix to find the mirror image of a line with respect to y-axis.
7. Consider the given coordinate system as given below. Let $\mathrm{A}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{B}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $C(x, y)$ the three points on this coordinate system. The point $C(x, y)$ is obtained by rotating the point $B\left(x_{1}, y_{1}\right)$ by an angle α with respect to the point $A\left(x_{0}, y_{0}\right)$. Write the formula for coordinates x and y.

8. Detine Parallel Projection and Perspective Projection in three dimensional viewing.
9. Give the equation for three-dimensional rotation about z -axis by angle β.
[30 Marks]
10. Derive a transformation matrix to project a point $P(x, y, z)$ onto $Q\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ on a plane parallel to XY-Plane but going through $\left(0,0, z_{v p}\right)$. The type of projection applied is perspective with reference point at $\left(0,0, \mathrm{z}_{\mathrm{rp}}\right)$.
Let $\mathrm{P}(-10,5,10), \mathrm{z}_{\mathrm{yp}}=5, \mathrm{z}_{\mathrm{rp}}=10$. Find the projected coordinate of the point P .
[40 Marks]
