



## EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2007/2008 FIRST SEMESTER (Dec./Jan., 2008) ST 201 - STATISTICAL INFERENCE - I

Answer all questions

Time : Two hours

- Q1. A random sample  $X_1, X_2, \dots, X_n$  is taken from a Poisson distribution with mean  $\lambda$ and it is required to estimate  $\theta = \lambda^2$ .
  - (a) Show that the sample mean,  $\bar{X}$ , is a sufficient statistic for  $\theta$ .
  - (b) Evaluate  $E(\bar{X})$  and  $E(\bar{X}^2)$  and hence find an unbiased estimator of  $\theta$  based on  $\bar{X}$ .
  - (c) Find the Cramer Rao lower bound for the variance of unbiased estimators of  $\theta$ .
  - (d) Find the efficiency of your estimator in the case n = 1.
- Q2. (a) Define
  - i. A maximum likelihood estimator.
  - ii. A method of moment estimator.
  - (b) A random sample  $X_1, X_2, \dots, X_n$  is obtained from a distribution with probability density function,

$$f(x) = \begin{cases} \frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}, & 0 \le x < \infty \\ 0, & \text{elsewhere.} \end{cases}$$

where  $\alpha(>0)$  and  $\beta(>0)$  are unknown parameters. Estimate  $\alpha$  and  $\beta$  by using the method of moments.

(c) Determine the maximum likelihood estimate for  $\sigma^2$  in the following Rayleigh family distribution based on a random sample of size n:

34

$$f(x) = \frac{x}{\sigma^2} e^{\frac{-x^2}{2\sigma^2}}, \quad x > 0$$

Q3. (a) Suppose that two independent random samples of n<sub>1</sub> and n<sub>2</sub> observations are selected from normal populations with means μ<sub>i</sub> and variances σ<sub>i</sub><sup>2</sup>, i = 1, 2. We wish to construct a confidence interval for the variance ratio σ<sub>1</sub><sup>2</sup>. Let s<sub>i</sub><sup>2</sup>, i = 1, 2 be as defined below,

$$s_i^2 = \frac{\sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2}{n_i - 1}, \quad i = 1, 2.$$

Then find a confidence interval for  $\frac{\sigma_1^2}{\sigma_2^2}$ , with confidence coefficient  $(1 - \alpha)$ .

- (b) A random sample of n<sub>1</sub> = 10 observations on breaking strength of a type of glass gave s<sub>1</sub><sup>2</sup> = 2.31 (measurements were made in pounds per square inch). An independent random sample of n<sub>2</sub> = 16 measurements on a second machine, but with the same kind of glass gave s<sub>2</sub><sup>2</sup> = 3.68. Estimate the true variance ratio, σ<sub>2</sub><sup>2</sup>/σ<sub>1</sub><sup>2</sup> in 90% confidence interval.
- (c) A factory operates with two machines of type A and one machine of type B. The weekly repair costs Y for the type A machines are normally distributed with mean μ<sub>1</sub> and variance σ<sup>2</sup>. The weekly repair costs X for machines of type B are also normally distributed but with mean μ<sub>2</sub> and variance 3σ<sup>2</sup>. The expected repair cost per week for the factory is then 2μ<sub>1</sub> + μ<sub>2</sub>. If you are given a random sample Y<sub>1</sub>, Y<sub>2</sub>, ..., Y<sub>n</sub> on costs of type A machines and an independent random sample X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>m</sub> on costs for type B machines, show how you would construct a 95% confidence interval for 2μ<sub>1</sub> + μ<sub>2</sub>. (Assume σ<sup>2</sup> is not known).

Q4. (a) Define the following terms

- i. Unbiased estimate.
- ii. Sufficiency.
- iii. Consistency.
- (b) Suppose X<sub>1</sub>, X<sub>2</sub>, · · · , X<sub>n</sub> and Y<sub>1</sub>, Y<sub>2</sub>, · · · , Y<sub>n</sub> are independent random samples from populations with means μ<sub>1</sub> and μ<sub>2</sub> and variances σ<sub>1</sub><sup>2</sup> and σ<sub>2</sub><sup>2</sup> respectively. Suppose that the populations are normally distributed with σ<sub>1</sub><sup>2</sup> = σ<sub>2</sub><sup>2</sup> = σ<sup>2</sup>. Show that

$$\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2 + \sum_{i=1}^{n} (Y_i - \bar{Y})^2}{(2n-2)}$$

is a consistent estimator of  $\sigma^2$ .

(c) Let  $X_1, X_2, \dots, X_n$  be a random sample from a population with probability density function,

$$f(x, \theta) = \theta x^{\theta - 1}, \qquad 0 < x < 1, \ \theta > 0.$$

Show that  $t_1 = \prod_{i=1}^n X_i$  is sufficient for  $\theta$ .

(d) Suppose  $Y_1, Y_2, \dots, Y_n$  is a random sample from a population with probability density function

$$f(y) = \begin{cases} \frac{1}{\theta+1} e^{-y/\theta+1}, & y > 0, \ \theta > -1 \\ 0, & \text{elsewhere.} \end{cases}$$

Suggest a suitable statistic to be used as an unbiased estimator for  $\theta$ .