

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE - 2004/2005 SECOND SEMESTER (Oct./ Nov., 2006) <u>MT 301 - GROUP THEORY</u>

(Proper and Repeat)

Answer all questions

Time : Three hours

1. (a) Define the following terms:

ii. subgroup of a group.

- (b) Let H be an non-empty subset of a group G. Prove that, H is a subgroup of G if and only if ab⁻¹ ∈ H, ∀ a, b ∈ H.
- (c) Let G be a group and H be a non-empty subset of G. Prove that H is a subgroup of G if and only if $HH^{-1} = H$.
- (d) Let H and K be two subgroups of a group G. Prove that HK is a subgroup of G if and only if HK = KH.

i. group,

- 2. (a) State and prove Lagrange's theorem for a finite group G.
 - (b) Prove that in a finite group G, the order of each element divides the order of G. Hence prove that every group of prime order is cyclic; moreover, in a group of prime order p, every non-identity element has order p.
 - (c) Let p and q be two distinct prime numbers and let G be a group of order pq. Show that every proper subgroup of G is cyclic.
 - (d) Let G be a non-abelian group of order 8. Prove that G contains at least one element of order 4.
- 3. (a) State and prove the first isomorphism theorem.
 - (b) Let G be a group such that for fixed integer n > 1, (ab)ⁿ = aⁿbⁿ for all a, b ∈ G. Let G_n = {a ∈ G : aⁿ = e} and Gⁿ = {aⁿ : a ∈ G}. Prove that G_n ≤ G and G/G_n ≈ Gⁿ.
- 4. Prove or disprove the following:
 - (a) If H and K are two subgroups of a group G then $H \cup K$ is a subgroup of G.
 - (b) The homomorphic image of an abelian group is abelian.
 - (c) If all non-trivial subgroups of a group G are cyclic then G is cyclic.
 - (d) Any group of order p^n , where p is prime, has non-trivial center.

- (a) Define the term p-group.
 Prove the following:
 - i. Every subgroup of a p-group is a p-group.
 - ii. The homomorphic image of a p-group is a p-group.
 - (b) Define the commutator subgroup G' of a group G. Prove the following:
 - i. $G' \trianglelefteq G$, ii. $\frac{G}{G'}$ is abelian, iii. If $H \trianglelefteq G$; then $\frac{G}{H}$ is abelian if and only if $G' \subseteq H$.
- 6. Define the following terms as applied to a group:
 - * Permutation,
 - * Cycle of order r,
 - * Transposition,
 - * Signature.
 - (a) Prove that the set S_n of all permutations on n symbols forms a group.
 - (b) Prove that the permutation group on n symbols (S_n) is a finite group of order n!.

Is it true that S_n is abelian for n > 2? Justify your answer.

(c) Express the permutation,

$$\sigma = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{array}\right)$$

as a product of disjoint cycles. Hence or otherwise, find the inverse of σ and determine whether σ is even or odd.