EASTERN UNIVERSITY, SRI LANKA
THIRD EXAMINATION IN SCIENCE - 2004/2005
SECOND SEMESTER (Oct./ Nov., 2006)
MT 301 - GROUP THEORY
(Proper and Repeat)

1. (a) Define the following terms:
i. group,
ii. subgroup of a group.
(b) Let $H$ be an non-empty subset of a group $G$. Prove that, $H$ is a subgroup of $G$ if and only if $a b^{-1} \in H, \forall a, b \in H$.
(c) Let $G$ be a group and $H$ be a non-empty subset of $G$. Prove that $H$ is a subgroup of $G$ if and only if $H H^{-1}=H$.
(d) Let $H$ and $K$ be two subgroups of a group $G$. Prove that $H K$ is a subgroup of $G$ if and only if $H K=K H$.
2. (a) State and prove Lagrange's theorem for a finite group $G$.
(b) Prove that in a finite group $G$, the order of each element divides the order of $G$. Hence prove that every group of prime order is cyclic; moreover, in a group of prime order $p$, every non-identity element has order $p$.
(c) Let $p$ and $q$ be two distinct prime numbers and let $G$ be a group of order $p q$. Show that every proper subgroup of $G$ is cyclic.
(d) Let $G$ be a non-abelian group of order 8. Prove that $G$ contains at least one element of order 4.
3. (a) State and prove the first isomorphism theorem.
(b) Let $G$ be a group such that for fixed integer $n>1,(a b)^{n}=a^{n} b^{n}$ for all $a, b \in G$. Let $G_{n}=\left\{a \in G: a^{n}=e\right\}$ and $G^{n}=\left\{a^{n}: a \in G\right\}$. Prove that $G_{n} \unlhd G$ and $\frac{G}{G_{n}} \cong G^{n}$.
4. Prove or disprove the following:
(a) If $H$ and $K$ are two subgroups of a group $G$ then $H \cup K$ is a subgroup of $G$.
(b) The homomorphic image of an abelian group is abelian.
(c) If all non-trivial subgroups of a group $G$ are cyclic then $G$ is cyclic.
(d) Any group of order $p^{n}$, where $p$ is prime, has non-trivial center.
5. (a) Define the term p-group.

Prove the following:
i. Every subgroup of a p-group is a p-group.
ii. The homomorphic image of a p-group is a p-group.
(b) Define the commutator subgroup $G$ of a group $G$.

Prove the following:
i. $G^{\prime} \unlhd G$,
ii. $\frac{G}{G^{\prime}}$ is abelian,
iii. If $H \unlhd G$; then $\frac{G}{H}$ is abelian if and only if $G \subseteq H$.
6. Define the following terms as applied to a group:

* Permutation,
* Cycle of order $r$,
* Transposition,
* Signature.
(a) Prove that the set $S_{n}$ of all permutations on $n$ symbols forms a group.
(b) Prove that the permutation group on $n$ symbols $\left(S_{n}\right)$ is a finite group of order $n$ !.

Is it true that $S_{n}$ is abelian for $n>2$ ? Justify your answer.
(c) Express the permutation,

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 2 & 1 & 3
\end{array}\right)
$$

as a product of disjoint cycles. Hence or otherwise, find the inverse of $\sigma$ and determine whether $\sigma$ is even or odd.

